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ABSTRACT
Extensive testing of Automated Driving Systems (ADS), such as
Advanced Driver Assistance Systems and Autonomous Vehicles, is
commonly conducted using simulators programmed to implement
various driving scenarios, a technique known as scenario-based
testing. ADS scenario-based testing using simulations is challeng-
ing because it requires identifying scenarios that can effectively
test ADS functionalities while ensuring that driving simulators’
features match the driving scenarios’ requirements. This short pa-
per discusses the main challenges of systematically conducting
simulation-based testing and proposes leveraging Software Prod-
uct Line techniques to address them. Specifically, we argue that
variability models can be used to support testers in generating test
scenarios by effectively capturing and relating the variability in
driving simulators, testing scenarios, and ADS implementations.
We conclude by outlining an agenda for future research in this
important area.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software testing and debugging; • Computer systems organi-
zation→ Embedded and cyber-physical systems.

KEYWORDS
Autonomous Vehicles, Scenario- and Simulation-based Testing, Soft-
ware Product Lines
ACM Reference Format:
Stefan Klikovits, Alessio Gambi, Deepak Dhungana, and Rick Rabiser. 2024.
Leveraging Software Product Lines for Testing Automated Driving Systems.
In 18th InternationalWorking Conference on Variability Modelling of Software-
Intensive Systems (VaMoS 2024), February 7–9, 2024, Bern, Switzerland. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3634713.3634720

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
VaMoS 2024, February 7–9, 2024, Bern, Switzerland
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0877-0/24/02.
https://doi.org/10.1145/3634713.3634720

1 INTRODUCTION AND MOTIVATION
Automated Driving Systems (ADSs), which include Advanced Dri-
ver Assistance Systems andAutonomous Vehicles, carry the promise
to improve transportation and mobility. On the one hand, they aim
to reduce accidents and their criticality drastically; on the other
hand, they aim to improve fuel consumption and passenger comfort.

ADSs are complex, safety-critical systems in which software
and hardware cooperate; additionally, they are increasingly embed-
ded with Machine Learning and Artificial Intelligence capabilities,
making thorough validation difficult.

Thereby, ADSs are an instance of a class of autonomous safety-
critical Cyber-Physical Systems (CPSs), including autonomous drones,
pilotless delivery robots, automated maritime vehicles, etc. Conse-
quently, the challenges found in the testing and verifying ADSs are
shared and representative of this class of systems.

Testing ADSs is commonly conducted using computer simulators
for cost-efficiency and safety reasons: using simulations, ADSs can
be tested at different levels of abstraction (Model-, Software- and
Hardware-in-the-loop [21]) in nominal and critical scenarios, like
car crashes, that are rare to observe [18] and too expensive to
replicate in real life.

Scenario-based testing using simulations is challenging because
it requires finding a suitable match among ADSs functionalities un-
der test, driving scenarios, and simulators to test them. The possible
concrete driving scenarios that can be implemented are infinite;
thus, developers need to identify relevant driving scenarios, i.e.,
driving scenarios that effectively stress the target ADSs’ functionali-
ties. Additionally, existing driving simulators do not offer a standard
interface, do not implement the same range of features, and are not
generally well documented. Consequently, developers must man-
ually identify simulators that offer the functionalities necessary
to implement the selected scenarios and are also compatible with
ADSs’ implementation.

Developers would benefit from an approach that can systemat-
ically handle such complexity, and, in this short paper, we argue
that variability models can be used to effectively capture and relate
the variability in driving simulators, driving scenarios, and ADSs’
implementations. Leveraging software product line techniques can
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enable the design of smart systems that support testers in generat-
ing test scenarios by recommending valid scenarios and simulator
combinations suitable for testing ADSs.

Software product line (SPL) engineering [9] has been proven
useful to support systematic, large-scale reuse and customisation
of software in many domains [19, 28]. SPL engineering techniques,
specifically dynamic software product lines [7], have supported the
context-dependent reconfiguration of autonomous vehicles [17].
Also, feature models [10] have been used to model the (physical)
variability of autonomous underwater vehicles [8]. However, to our
knowledge, only one line of research has focused on using product
line techniques to support scenario-based testing of autonomous
vehicles, or, more specifically, of advanced driver assistance sys-
tems [6]. In their work, Birkemeyer et al. also confirm that it is
challenging to select a set of representative test scenarios and to
assess the effectiveness of a test scenario suite. They leverage a
feature model to select scenarios from a scenario space and assess
the resulting scenario suite’s effectiveness using a mutation score.

This paper proposes a more general, multi-model approach to
support ADSs testing. Specifically, we propose to use multiple vari-
ability models to represent the variability of scenarios, simulators,
and agents (ADSs’ implementations) and relate them via cross-model
constraints. We envision creating smart recommender systems that
can support developers in generating test scenarios based on these
related models.

2 THE CHALLENGE OF ADS TESTING
The co-existence of ADSs alongside regular traffic participants
brings new challenges for ensuring their reliability and safety.
Nowadays, scenario-based testing using simulations is a de-facto
standard for ADS validation. Thereby, an ADS agent is executed in
several different driving scenarios. Real-world testing, as proposed
by safety agencies such as EURO NCAP,1 is prohibitively expensive
and dangerous; therefore, most of the validation is conducted in
simulated environments that enable testers to fully control every
aspect of the execution, generate safety-critical scenarios, and test
the agent at different level of abstractions.

For instance, assume that a developer must test the collision
avoidance system (CAS) software, which is central for the safety of
the self-driving car, using simulations. To do so, the developer has to
choose a set of scenarios that stress the component and can expose
issues in its implementation. For example, suitable scenarios might
involve other traffic participants, such as pedestrians crossing the
road or vehicles cutting into the lane, and testing whether the agent
can avoid them. Conversely, scenarios that do not involve any other
traffic participant might not be helpful to the developers for testing
CASs. Those high-level scenarios (i.e., abstract scenarios) must be
refined and implemented into running driving simulations (i.e.,
concrete scenarios). For instance, the developer must choose the
number of pedestrians simulated, how they are dressed, how they
move, and so on. Likewise, simulating traffic requires placing and
moving vehicles of different types and sizes in a realistic fashion.

1https://www.euroncap.com/

Over the years, numerous simulators (e.g., BeamNG.tech [4],
Carla [12], LGSVL [26]) and driving agents (e.g., Apollo [1], Au-
tonomoose [2]) were developed and tested on a plethora of different
scenario sets (e.g., EuroNCAP [15], SafetyPool [11]).

2.1 Variability
Given this variety, the selection of a “good” combination of ADS,
simulator and scenario (set) is not always straightforward. For
instance, testing a specific capability, such as the CAS of a certain
agent, requires a simulator and scenario set that will execute it
accordingly.

Agent Variability. This variability may be represented using
methods known from the variability and software product lines
domain. For instance, an autonomous driving agent could be de-
scribed using a feature model (FM) as shown in Figure 2a. This
(reduced) FM shows that an agent is implemented at a specific Ab-
straction Level, which defines whether it is a Software component,
an abstract Model (such as the kinematic bicycle model [24]) or if
it is integrated into a Hardware setup where it has to be tested as
e.g. hardware in the loop unit.

Similarly, depending on the type of agent, different Features are
available, such as Sensors, Knowledge sources (e.g., access to maps),
and control features that allow the vehicle to operate (e.g., Steering,
Throttle, Brake).

Scenario Variability. Scenarios may also be represented using
FMs, as exemplified in Figure 2b. Here, we see that a scenario speci-
fies the agent under test’sMission (Initial State andObjectives), the
layout of theMap and the position, shape and behaviour of various
Obstacles, such as other Traffic Participants, and any Environment
conditions that might be required for implementing this specific
scenario.2

Simulator Variability. Finally, the individual simulators’ variabil-
ity might also be expressed as FM (cf. Figure 2c). Note how the
simulator FM reflects many features that were similarly described
in the previous FMs. For instance, to enable hardware in the loop
testing, the simulator has to provide the capability to include such
a scenario. Conversely, certain simulators might be “too detailed”
for testing abstract kinematic models.

Furthermore, the simulator should also support a scenario’s de-
fined specifications. Hence, the prescribed weather and lighting
conditions can only be simulated, if the tool supports such an al-
teration of the simulated environment, which is not always the
case.

3 MULTI-MODEL APPROACH
In the context of testing ADSs, reusable assets of SPLE can translate
into reusable driving agents (e.g., vehicles), simulation environ-
ments, and test scenarios. We propose to model the variability of
these three artefacts in three different models, as they can be seen
as three individual product lines. An overview of the proposed
approach is depicted in Figure 1. As reported by Reiser and Weber
[25], attempting to model various viewpoints and distinct product
lines using a global feature model is often unfeasible in practice.

2Note that an exhaustive scenario description exceeds the scope of this work.

https://www.euroncap.com/
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Many multi-product line approaches have thus been proposed to
address this issue [16].

Agent Feature Model outlines the various attributes, compo-
nents, and options available for a specific ADS, which is
the subject of the test. It includes typical hardware charac-
teristics and software modules that can be customised or
configured (see example in Figure 2a).

Scenarios Feature Model outlines the various attributes, func-
tionalities, and customisation options available in a software
artefact describing the main variables of a driving experience.
It includes road geometry and map, driving tasks (i.e., the
mission to accomplish), traffic and pedestrian behaviour, etc.
(see example in Figure 2b).

Simulator Feature Model outlines the various attributes, func-
tionalities, and customisation options available in a software
application designed to simulate the experience of driving
a vehicle. It includes the simulator’s capabilities, e.g., driv-
ing physics, camera views, control options, location/terrain,
time and weather conditions, etc. (see example in Figure 2c).

Even though the three models represent independent product
lines, when it comes to generating test cases, all these models must
be configured correctly and must consider the options selected
in other models. Consequently, there exist constraints across the
different models, which must be considered and captured formally
in a model-based approach. In our approach, these Cross-Model
Constraints are similar to the invar approach Galindo et al. [14]
and can also be seen as “cross-discipline constraints” as reported
by Fadhlillah et al. [13]. The formulation of the Cross-Model Con-
straints allows us to have a unified view of all the different product
lines – a Unified Configuration Model is created. Figure 2d shows
some examples of Cross-Model Constraints.

The Unified Configuration Model is the basis for the generation
of the Test Cases. Instead of creating new test scenarios for each
vehicle model or software version, our approach enables the gen-
eration of test cases based on configured scenarios, agents, and
simulation environments. The tester provides the test oracles, i.e.,
assertions defining the system under test’s expected behaviour.
Next, an automated reasoning engine completes the configuration
and generates the required testing artefacts, which include the test
scripts for setup, execution, and verification (i.e., test cases), and
the configuration parameters for the agent and the simulator.

In the long run, as the variability models become stable, test
cases can be designed to cover different feature combinations and
configurations, leading to more thorough testing. With a model-
based approach, collaboration and knowledge sharing within the
testing community can be enhanced as the reusable scenarios and
test cases can be shared and adapted by different teams working
on various aspects of autonomous vehicle testing.

4 DISCUSSION
Our method suggests the joint use of several variability models as a
basis to find appropriate tools and scenarios for ADS testing. Indeed,
as outlined in the previous section, if used correctly, our approach
could relieve a big burden on the ADS industry. Nonetheless, we
note that several challenges still remain. In this section, we outline
some of them.

Figure 1: Overview of the proposed approach.

Information Sources. The FMs presented in Figure 2b, Figure 2a,
and Figure 2c are limited examples that do not encompass the full
complexity of ADS agents, scenarios and simulators. Additionally,
some features are specific to individual tools or have certain re-
quirements (e.g., proprietary APIs) that render them tool-specific.
One difficulty might be obtaining and integrating this information
into a common FM format and maintaining this information (cf.
the challenge on automating variability management below).

Scenarios are typically stored in XML or JSON format and follow
commonly available standards (e.g., OpenScenario [23]), allowing
them to be parsed rather easily. Furthermore, over the years, the
academic community has described the use of various sources as
the basis for the design of scenarios, including legal documents,
traffic rules, accident reports, etc.

On the other hand, finding a parsable representation that allows
a complete description of agent or simulator features might be a bit
more difficult. One potential solution might be the use of (internal)
APIs of open-source software. Industrial or closed-source tools,
however, would still require manual editing.

Heterogeneity. Another challenge is the heterogeneity of the
developed tools, which produces inherent complexity, naming con-
flicts and similar issues. Even though recent years saw the rise of
several standardisation agencies trying to tame this situation by
suggesting standards, the proposed standards remain volatile and
subject to frequent changes, requiring continuous efforts. Addition-
ally, the simulators and agents might express features at different
levels of abstraction (e.g. weather could be modelled as “rainy” vs
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Agent

Abstraction Level

Hardware Software Model

Features

Sensors

Camera

Number Resolution

Lidar

Number Resolution

Knowledge

SLAM

Planners

Motion Planning

Actuators

Steering Throttle Brake

(a) Agent FM
Scenario

Mission

Initial State Objectives

Crash Avoidance Reach Destination

Map

Road network Buildings

Obstacles

Traffic Participants

Type Behaviour

Position Size Shape

Environment

Weather Lighting Road Surface

(b) Scenario FM
Simulator

Level

Hardware Software Model

Dimensions

2D 3D

Sensors

Lidar Cameras GPS Collision Detection

Obstacles

Traffic Participants

Type

Pedestrian Bicycle Vehicle

Behaviour

Static Fixed Reactive

Position Size Shape

Environment

Weather Lighting Road Surface

(c) Simulator FM

Agent : L eve l =⇒ S imu l a t o r : L eve l
Agent : Cameras =⇒ S imu l a t o r : Cameras
S c en a r i o : Environment =⇒ S imu l a t o r : Environment
S c en a r i o : Crash Avoidance =⇒ S imu l a t o r : C o l l i s i o n De t e c t i on
S c en a r i o : Crash Avoidance =⇒ S imu l a t o r : P e d e s t r i a n OR Sc ena r i o : V eh i c l e
S c en a r i o : T r a f f i c P a r t i c i p a n t s =⇒ S imu l a t o r : T r a f f i c P a r t i c i p a n t s

(d) Cross-Model Constraints

Figure 2: Multi-model approach: examples of Agent, Scenario, and Simulator Feature Models and Cross-Model Constraints.

“sunny”, or in full detail, including the amount of precipitation, rain-
drop size, humidity, etc). This means that it is necessary to find
an adequate way to represent these abstraction levels across the
individual FMs.

Thus, while the creation of FMs is straightforward on a theoreti-
cal level, practical concerns might cause the approach to be more
involved than expected.

Automating variability management. A main reason why vari-
ability modelling approaches and tools are often not adopted in
practice is themanual effort required to create andmaintain variabil-
ity models [5]. The proposed multi-view modelling does not resolve
this situation but might make it more manageable by following a
divide-and-conquer approach. If the ADS testing community suc-
ceeds in standardising terminology as well as scenario representa-
tion and format, one could develop a tool that can (semi-)automatically
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populate and maintain variability models describing scenarios. Sim-
ilarly, it might be possible to develop such tools to populate and
maintain simulator feature models and agent feature models. A key
challenge that will be important to address is also to automate (at
least partly) the definition and maintenance of the cross-model de-
pendencies. Automatically populating and maintaining variability
models is a general challenge in the variability modelling commu-
nity, one that has seen some proposals – e.g., feature identification
and extraction approaches [3, 20] and constraint extraction ap-
proaches [22, 27] – but yet needs to be solved on a more general
level.

Additional Challenges. Next to the above challenges, we also note
that several challenges remain that are closer to the operational
aspects of PLs. These include achieving traceability in the presence
of model composition, efficiently solving cross-model constraints,
and maintaining the consistency of the multiple models.

5 NEXT STEPS
In this short paper, we presented our idea of pursuing a multi-model
approach to capture and relate the variability in driving simula-
tors, testing scenarios, and autonomous vehicle implementations
to enable the design of smart recommender systems that support
testers in generating test scenarios for ADSs. We have described
several challenges that yet remain to be solved in future work.
As a next step, we will develop the system, which, based on the
related variability models, presents options to testers and allow
them to generate test cases. Existing tools such as FeatureIDE 3

or pure::variants 4 with their support for creating and relating, as
well as configuring multiple feature models, will be a good starting
point.
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