
Model-Driven Optimization for
Quantum Program Synthesis with MOMoT

Felix Gemeinhardt , Martin Eisenberg , Stefan Klikovits , Manuel Wimmer
Christian Doppler Laboratory for Model-Integrated Smart Production (CDL-MINT)

Institute of Business Informatics – Software Engineering
Johannes Kepler University Linz, Austria

{firstname.lastname}@jku.at

Abstract—In the realm of classical software engineering,
model-driven optimization has been widely used for different
problems such as (re)modularization of software systems. In
this paper, we investigate how techniques from model-driven
optimization can be applied in the context of quantum soft-
ware engineering. In quantum computing, creating executable
quantum programs is a highly non-trivial task which requires
significant expert knowledge in quantum information theory and
linear algebra. Although different approaches for automated
quantum program synthesis exist—e.g., based on reinforcement
learning and genetic programming—these approaches represent
tailor-made solutions requiring dedicated encodings for quantum
programs. This paper applies the existing model-driven optimiza-
tion approach MOMoT to the problem of quantum program
synthesis. We present the resulting platform for experimenting
with quantum program synthesis and present a concrete demon-
stration for a well-known quantum algorithm.

Index Terms—Quantum Circuit Synthesis, Model-Driven Op-
timization, Quantum Software Engineering

I. INTRODUCTION

Recent years have shown significant and diverse progress in
the application of AI for model transformations, concerning
endeavours such as model translation [1], generation [2], or
repair [3], [4]. In the subfield of Model-Driven Optimization
(MDO), AI methods integrated with modeling environments
were investigated for optimizing models given constraints and
quantitative objectives [5]–[7]. In this context, synthesis of
design models was investigated as well with the Class Re-
sponsibility Assignment case [8]. Thereby, the aim is to assign
program features to classes while maintaining separation of
concerns, in order to obtain a high-quality software model.
A similar challenge arises in the development of quantum
programs, which has gained increasing traction in research
due to the complexity and required knowledge.

Automated Software Engineering for Quantum Computing.
The field of Quantum Software Engineering has emerged at
the intersection of classical software engineering to Quantum
Computing (QC) with the overall goal of porting concepts
obtained from decades of research in classical software en-
gineering to the domain of QC [9], [10]. The idea of ap-
plying Model-Driven Engineering (MDE) [11] techniques in
the domain of QC has been adopted in the literature, e.g.,
regarding a conceptual model of quantum programs [12] and
software modernization [13], [14]. Similarly, methods from
classical computing, such as reinforcement learning [15]–[17]

and genetic programming [18]–[20], have been proposed for
the automated discovery and synthesis of quantum programs.
The latter is particularly relevant for a broad adoption of QC,
because designing a suitable quantum program for a desired
computational task requires extensive knowledge in quantum
information theory and linear algebra [10], [21].

Problem Statement. Even though (i) MDO has been adopted
for AI-driven model transformations, (ii) techniques from
MDE have been used in the context of QC [12]–[14], and
(iii) search approaches have already been investigated for
the problem of automated quantum program synthesis [18],
[22], [23], to the best of our knowledge, there exist no MDO
approaches for the automated synthesis of quantum programs.
The latter not only entails capturing relevant entities of quan-
tum programs, but also the possibility to harness the comfort
of existing model transformation tools (e.g., Henshin [24]) and
MDO frameworks, such as MOMoT [7]. Thus, we open the
MDO toolbox for quantum programs to envision a holistic
approach that supports the definition but also to facilitate
development, in parts or as a whole, by leveraging AI methods.

Contributions. Our contributions can be summarized as
follows. First, we present a method to conduct automated
quantum program synthesis using the existing MDO engine
MOMoT [7]. We integrate quantum-specific functionalities
of dedicated Quantum Software Development Kits (Q-SDKs)
into the MOMoT framework, in order to analyze generated
programs in terms of their validity and utility in relevant
criteria. Third, we demonstrate the feasibility of our proposed
approach by applying it to a well-known quantum algorithm.
Thereby, we foster the amalgamation of QC and AI [25] by
investigating the application of MDO to quantum programs.
Based on our initial results, we hope to stimulate further
MDO research for Quantum Software Engineering. Drawing
from dedicated models for representing quantum programs
and configurable MDO approaches, it would allow to further
analyse the application of different AI and MDE approaches
for quantum program synthesis in the future.

Structure. The paper is structured as follows. Section II
provides background information before the proposed quantum
program synthesis approach is outlined in Section III. The
demonstration of the method is presented in Section IV. We
discuss related work in Section V and conclude in Section VI.

https://orcid.org/0000-0001-7589-8263
https://orcid.org/0009-0001-9696-0326
https://orcid.org/0000-0003-4212-7029
https://orcid.org/0000-0002-1124-7098

II. BACKGROUND

This work incorporates several domains and disciplines that
are introduced next, including the application of MDO tools,
fundamentals of QC, and synthesis of quantum programs.

A. The MOMoT Framework

In general, MDO tools [5]–[7] leverage the abstraction
principle of MDE to define and solve optimization problems
on the model level. To that effect, optimization techniques are
adopted and lifted to operate on the same abstraction level. The
exploration of the search space takes place as changes are ap-
plied to the model by means of model transformations. Model
transformations constitute a key technology in MDE [11], [26].
They derive a new model from an existing one (out-place) or
modify a model directly (in-place) [27], with MDO mostly
making use of the latter.

The MOMoT framework [7] denotes an integration of
technologies to provide a problem-agnostic environment for
model optimization. It bridges a modeling and transformation
toolset (based on the EMF [28]) with the MOEA framework1

as it integrates the latter’s search algorithms to guide the
exploration. The design space is induced by a provided set
of transformation rules, which are formulated and executed
as graph transformations using Henshin [24]. The latter rely
on a graph matching mechanism to locate patterns to be
transformed and manipulate the graph representation. The
underlying models emerging from these transformations are
evaluated on domain-related conditions and fitness functions.

B. Quantum Computing: The Circuit Model

In QC, information is processed by harnessing quantum
mechanical phenomena. Different models exist for the infor-
mation processing, whereby the quantum circuit model [29] is
the most commonly used realistic model. In analogy to logic
gates for classical computation, a quantum circuit comprises
the application of quantum gates in an ordered manner [21].
Quantum gates are sequentially applied to the quantum infor-
mation, which is stored on so-called qubits. The current era
of QC is referred to as the Noisy Intermediate-Scale Quantum
(NISQ) era, where limitations of the immature quantum hard-
ware are mitigated by significant means of auxiliary classical
computation [30]. In this era, the quantum gates are frequently
parameterized, which allows to cope with the imprecise quan-
tum information processing of current quantum hardware [31].
Parameters represent real-valued rotation angles ranging be-
tween 0 and 2π, specifying the concrete action of the gate.
They are optimized by classical numerical quantum-aware
parameter optimizers, which constitute a central element of
NISQ-era quantum algorithms [31]–[34].

A simple example of a parameterized quantum circuit is de-
picted in Fig. 1. As illustrated, any arrangement of elementary
quantum gates realizes a certain functionality and produces a
certain quantum state. A quantum state is generally denoted
as a complex-valued vector, where the according vector space

1http://moeaframework.org/

q0:
q1: Ry(

−π
8) Ry(

π
8) Ry(

−π
8)

q2: X Ry(
2π
3)

q3: X

Pos. of target quantum state

Qubits Gates

Fig. 1: Example parameterized quantum circuit; red line:
position of produced quantum state

is spanned by the computational basis states. In quantum
algorithms, circuits often comprise specific elements without
a defined implementation of elementary gates, referred to as
Oracles (cf. Fig. 3). Lacking the information on the imple-
mentation of Oracles prohibits the execution of a quantum
circuit [35].

C. Automated Quantum Program Synthesis

Finding an implementation, i.e., the required elementary
quantum gates to realize a certain functionality, is known
to be a highly non-trivial task which is required for the
quantum program to be executable. Furthermore, the prevailing
limitations given in the NISQ-era result in trade-offs, where
the accuracy and the computational cost of the solutions are
arguably the most important metrics in this regard. Accuracy
measures the functionality of a quantum program by assessing
the similarity between the produced output quantum state and
an expected target state. However, long sequences of gates—an
indicator for the computational cost—may lead to cumulative
errors in the computation which renders possible advantages
in terms of theoretical accuracy obsolete.

Several approaches have been explored to automate the
discovery and synthesis of quantum programs, where espe-
cially reinforcement learning [15]–[17], [36]–[38] and genetic
programming approaches [39]–[41] have been studied.

D. Synopsis

In the next section, we will describe how the MOMoT
framework can be applied to automatically synthesize quantum
programs in terms of circuit models. To this end, a genetic
algorithm is used to search for implementations that meet the
trade-off between accuracy and computational cost present in
the NISQ-era.

III. APPROACH

A. Overview

The goal of our proposed approach is to find an elementary
gate implementation of a quantum program (i.e., the Oracle in
Fig. 3), such that the overall quantum circuit is executable. As
illustrated in Fig. 3, the position of the Oracle in the circuit
as well as the position of the target state can be freely chosen
by the user.

The overall process of our proposed approach is illustrated
in Fig. 2. One central ambition is the neutrality with respect to

Model-Driven Optimization

Quantum SDK

QC-Search module

(generic) qMDO

Q-Platform Specific

Individual
Creation & Transformation

Search
Algorithm

Fitness
Evaluation

Parameter
Optimization

Triggers
Evaluation

Returns
Fitness &
Params

Quantum Circuit Model
with Placeholder Oracle

Quantum Circuit Models
with Implemented Oracle

Quantum CircuitQuantum Circuit

Search Configuration Synthesis Rules &
Conditions

Quantum Circuit
Language

Fig. 2: Components and modules of the overall workflow of the quantum program search approach (Quantum circuit
transformation to circuit model is left as future work)

quantum circuit definitions of different Q-SDKs. The quantum
circuit designer can thus declare an overall quantum circuit
with an arbitrary-sized Oracle as illustrated in Fig. 3 by using
familiar Q-SDKs (Q-Platform Specific). In a next step, the
circuit is transformed to a model instance of a quantum circuit
which conforms to the according Quantum Circuit Language.
Thus, the optimization is conducted on the generic level
(qMDO). Note, that we have not implemented model injectors
yet but rather start directly at the model-level and keep the
transformation from the Q-SDK representation as future work.
The resulting Quantum Circuit Model with Placeholder Oracle
serves as input for the search process.

From the MDO perspective, inputs consist of Synthesis
Rules & Conditions as the scope for exploration of the Oracle,
and the Search Configuration, which concerns the algorithms
that drive the exploration as well as quantum specific specifi-
cations such as the target quantum state and its position in the
circuit. Bundled with the aforementioned input circuit using
the configuration language of MOMoT [7], they form a fully-
fledged and executable setup for the QC-Search Module.

The QC-Search Module comprises two parts. First, the
Model-Driven Optimization employs a search engine to set and
apply sequences of transformation rules on the input Quantum
Circuit Model. The generation procedure is contingent upon
the used method’s explorative and exploitative capabilities.
The fitness evaluation, an integral part of the search process,
is outsourced to the Quantum SDK, since the calculations
of the fitness targets should be natively conducted, as they
require the information from simulated quantum processes. For
this purpose, we provide automated code generation facilities
that target the given Quantum SDK and build the respective
quantum circuit object at this level. Beside calculations of the
fitness targets, also the optimal parameters for the elementary
gates comprising the Oracle are computed within the Quantum

L1 L2 L3 L4 L5 L6 L7 L8 L9

q0: H

Oracle

H X X H

q1: H H X X H

q2: H H X H X H X H

Target State

?

Fig. 3: Quantum circuit for Grover Search; Oracle: searched
quantum program, red line: position of target quantum state,
L1-L9: Layers

SDK and exported to the Quantum Circuit Model. The Pareto-
set of executable Quantum Circuit Models with Implemented
Oracle constitutes the output of the search process. This set
represents the found trade-off solutions of the multi-objective
search and the Quantum Circuit Models are transformed back
to the specific Q-SDK representation.

B. Model-Driven Optimization

As mentioned earlier, we apply the MOMoT framework
to search for quantum circuits with preferable characteristics.
From the brief introduction in Section II, a problem definition
in MOMoT comprises (i) the domain meta-model, (ii) a
conforming domain model instance as the starting point of the
search, (iii) the transformation model, and (iv) the objective
functions and potential constraints.

a) Domain model: The currently used modeling lan-
guage for the quantum circuit synthesis problems and solutions
(Fig. 4) is based on the modeling approach proposed in [42].
We select those language elements specific to the context
of quantum program synthesis, where an elementary gate

Quantum Circuit Language

*

*

0..1

*

targetQubits
1..*

controlQubits

*

*

*

0..1

QuantumCircuit

Layer

QuantumRegister

numberOfQubits: Int

ElementSelector

index: int

≪ abstract ≫
QuantumOperation

Oracle ElementaryQuantumGate

AngleParameter

theta: Double
phi: Double
lambda: Double

Fig. 4: Meta-Model of the Quantum Circuit Language for
Circuit Synthesis

implementation of an undefined Oracle is searched. Note,
that by using the EMF to define the language, it remains
extensible for further concepts required in general quantum
circuit design as well as allows to import other formats
to quantum circuit models. A QuantumOperation, i.e., an
ElementaryQuantumGate (H gate, X gate,...) or the Oracle,
are applied to certain qubits via the ElementSelector class.
The elementary quantum gates may be parameterized with
AngleParameters. In this regard, targetQubits are the qubits
that the gate actually acts on, while optional controlQubits
control whether the gate is applied on the target qubit. We also
added the concepts of Layers in our language. These ensure
that gates are not simultaneously applied to the same qubit,
i.e., within one layer, each qubit can only be addressed once
as a target or control qubit. For example, consider the H gate
located in layer 5 of Fig. 3. The subsequent multi-controlled
X gate acts on three qubits, hence can only be placed in the
following layer as qubit q2 is already addressed by the H gate.
The recursive structure allows to place gates into layers of the
Oracle, but prohibits that the Oracle contains the same layer
in which it is placed.

b) Initial model instance: The circuit under study (Fig. 3)
accommodates three qubits, each of which is subject to a H
gate (layer L1), which is followed by the yet undefined Oracle
(layer L2). The remaining elementary quantum gates after
the position of the target quantum state realize subsequent
functionalities of the overall circuit. However, they do not
influence the effects of preceding gates and are, therefore, not
relevant in the context of the investigated problem.

c) Transformation model: The composition of the Oracle
is done by gradual insertion of gates from the gate library. This
includes: 1) the selection of the elementary quantum gate (e.g.,
H gate), 2) picking the layer to which the gate is to be added,
3) selection of the target qubit and potential control qubit, and
4) if the selected gate is subject to angle parameters, setting
of those parameters.

These steps partly demand conditional logic and loops in
the semantics, e.g., to select a qubit not already occupied or

addGateToOracleLayer

:Oracle

l:Layer

selectControlQubits

:Quantum
Register

:Oracle

l:Layer

:Element
Selector

index=qbIdx

:Element
Selector

index=qbIdx

g:Elementary
QuantumGate

:Element
Selector

index=qbIdx

+++

occupies
register

2

setAngleParameters

:AngleParameter

<g.theta?> theta :=
<g.phi?> phi :=

<g.lambda?> lambda :=

g:Elementary
QuantumGate

controlQubits

[else][noCQubits > 0]

Oracle::insertGate(l:Layer, g:ElementaryQuantumGate)

noCQubits + noTQubits vacantQubits(l)

selectTargetQubits

:Quantum
Register

:Oracle

l:Layer

:Element
Selector

index=qbIdx

:Element
Selector

index=qbIdx

g:Elementary
QuantumGate

:Element
Selector

index=qbIdx

+++

//

occupies
register

++++++

occupies

targetQubits

3

4

[iterations done]
[for noCQubits times] [for noTQubits times]

[iterations done]

++++++

occupies

+++
operations

:Angle
Parameter

parameters
+++

g:Elementary
QuantumGate

cQubits=noCQubits
tQubits=noTQubits

1

//

Fig. 5: Story diagram for the insertion of a gate into the Oracle

to realize multiple qubit selections depending on the gate. Such
control structures are defined with Henshin units2, which in
turn call other units and/or rules.

The units and rules to fulfil the individual steps when adding
a gate are embedded in an overlying unit and sequentially
connected. The schematic procedure is depicted in Fig. 5.
Based on the language elements in Fig. 4, a randomly selected
ElementaryQuantumGate g is added to one of the Layers l of
the Oracle. Depending on the gate type, the controlQubit(s)
are designated first (2), if required, and then the targetQubit(s)
(3). A negative application condition prevents the multiple se-
lection of qubits at the current layer. Finally, again depending
on the gate, the AngleParameters are initialized (4). Conditions
are used to ensure semantically correct programs, e.g., in
the first step to only select and proceed with a layer having
sufficient vacant qubits to implement the chosen gate, or for
setting the relevant angle parameters. In addition to adding
gates to the Oracle, two further rules each reassign a target

2https://wiki.eclipse.org/Henshin/Units

qubit or a control qubit of a gate within the respective layer.
d) Fitness evaluation: The evaluation is performed using

the Quantum SDK. A corresponding program is provided
for this purpose, which is executed in advance by MOMoT
in a separate process. Therein the Python environment is
initialized with the libraries and functions required for the
evaluation of a quantum circuit. These functions are later
invoked from MOMoT after the code that defines the circuit,
as reflected by a model instance, is generated and passed via a
process interface. Upon termination of the circuit evaluation,
the process sends back the fitness assessment, the objectives
of which are elaborated in the following section.

C. Fitness Objectives and Parameter Optimization

Recently, we proposed a multi-objective genetic program-
ming approach for automated quantum program synthesis,
which allows for an explicit consideration of NISQ-era limita-
tions and trade-offs [23]. Here, we reuse the fitness evaluation
implemented for our previous search approach. The fitness
objectives are defined as 1) the overlap—a commonly known
measure in quantum physics [21]—evaluates the accuracy of
a quantum program. It measures the similarity between the
obtained output quantum state and the user-defined target
quantum state at the user-defined position in the circuit; 2) The
number of gates denotes the size of the individual. 3) The
depth denotes the number of gates to be applied sequentially
in the quantum circuit, i.e., the longest path between data
input and output. This definition equals the lowest possible
number of layers to realize a quantum program [35]. 4) The
number of non-local gates denotes the number of multi-qubit
gates. 5) A low number of parameters is supposed to speed-
up the fitness evaluation and is taken as a rough measure for
the complexity of the numerical optimization. Therefore, the
trade-off between accuracy (1) and computational cost (2)-
(5) [43] is explicitly considered. In each fitness evaluation,
a numerical optimizer finds the parameters of the individual
that maximize the overlap. These optimized parameters are
returned together with the computed fitness values and updated
in the quantum circuit model.

D. Tool Support

The modification of quantum programs in the QC Search
module is based on rule transformations and the technologies
integrated for their orchestration. Besides the demonstrated
assembly of the Oracle, the scope of modifications is ex-
tensible within the Henshin Ecosystem. The configuration
language in MOMoT provides high reusability, e.g. of the
transformation model set out in Section III-B, for any pro-
grams of the proposed language. Furthermore, it represents a
common source for all adjustments concerning search scope,
search algorithms as well as quantum-related settings like
the allowed number of gates or layers. The Quantum Circuit
Models are realized using the EMF as an Eclipse plug-in3. The
proposed approach is transparent concerning the lower-level

3https://github.com/cdl-mint/automated-quantum-program-search

q0:

q1:

q2: Z Z

Fig. 6: Analytical solution for Oracle implementation com-
prising two controlled-Z gates

quantum programming language. However, for demonstration,
the Python-based [44] Qiskit Q-SDK [45] was chosen for the
fitness evaluation and parameter optimization. Note, that the
agnosticism and modularity regarding the lower-level quan-
tum programming language remains because (i) the quantum
program synthesis facilities are by design independent from
the underlying quantum programming language, and (ii) the
required functionalities for the fitness evaluation and parameter
optimization are available also in other Q-SDKs (e.g., [46]).

IV. DEMONSTRATION

In the following, we demonstrate how our proposed ap-
proach can be applied to find implementations for quantum
programs in order to arrive at an executable form of the
designed quantum circuit.

A. Use case description: Grover Search

The Grover Search algorithm [21] allows to perform
searches with a quadratic speedup in the time complexity
compared to classical approaches (O(N) to O(

√
N)). Further-

more, it is applied as a subroutine in several other quantum
algorithms [47], [48]. The specific use case has been taken
from [49] (cf. Fig. 3).

When applying the Grover Search algorithm, the Oracle
operator has to be specified for each individual use case as
it marks the computational basis states of interest to the user.
Therefore, there is no general implementation of elementary
quantum gates available. Based on our example, the states of
interest are defined to be the sixth and seventh computational
basis state. Thus, the Oracle is specified by its conducted
quantum state transformation (up to normalization)

[1, 1, 1, 1, 1, 1, 1, 1] → [1, 1, 1, 1, 1,−1,−1, 1] (1)

which has the analytical solution of two controlled-Z gates
as the implementation of the Oracle (Fig. 6). The search
algorithm should try to find this or equivalent implementations
that realize the functionality of producing the target quantum
state given in Eq. 1.

B. Experimental setup and user inputs

a) Configuration of MOMoT: For the validation of our
approach—and considering a many-objective problem—we
chose a common setting for a genetic algorithm from the
adopted MDO tool, namely: The NSGA-III algorithm [50]
with one-point crossover (p = .8) and two mutation operators
to remove (p = .1) and/or replace (p = .2) a randomly selected
operation from the operation sequence. Infeasible operations

https://github.com/cdl-mint/automated-quantum-program-search

q0:

q1:

q2: H

(a) Solution 1: Controlled-H
gate.

q0:
q1:

q2: U(3π2 , 7π
16 , 2π)

(b) Solution 2: U gate.

q0: Z

q1:

q2: Ry(π)

(c) Solution 3: Controlled-RY gate and controlled-Z
gate.

Fig. 7: Optimal oracle solutions obtained through NSGA-III

in sequences emerging from recombination become subject
to a repair mechanism and are removed. The population is
initialized with 25 individuals and the search terminates after
100 generations.

The quantum circuit specific user-inputs have been set as
follows: 1) the target state as given in Eq. 1; 2) the position
of the target state is after Layer 2; 3) the maximum length of
a chromosome (i.e., gates and qubit reassignments) is 4.

b) Gate set definition: The gate set comprises the avail-
able elementary quantum gates that can realize the implemen-
tation of the Oracle. Combined with the range of addressable
qubits, it defines the search space for the synthesis problem.

From all single- and two-qubit gates provided in Qiskit [45],
we exclude 1) gates which can be expressed by a parame-
terized gate which is included in the used gate set; 2) gates
that are specifically applicable to a certain type of quantum
hardware (e.g., superconductor-based quantum devices).

C. Demonstration results

The previously described configuration is executed five
times, and the best trade-offs in the resulting solutions in terms
of accuracy and cost metrics are depicted in Fig. 7.

Of the three solutions, both 1 and 2 employ only one
gate in the Oracle and show an overlap of 0.604 and 0.707,
respectively. The U gate in 2 uses a single qubit only but
carries three parameters whereas the non-local controlled-H
gate has no parameters. Solution 3 consists of 2 consecutive
non-local gates, where the controlled-RY gate carries a param-
eter, and induces as the only found alternative the maximum
value of 1.0 for the overlap fitness. The optimum derived from
analytical considerations (cf. Fig. 6) was not reproduced in
these runs, but was confirmed as an obtainable solution after
narrowing the search space by reducing the pool of available
gates.

As the preferences of quantum circuit designers is usually
directed towards quantum operators of high accuracy, we
consider the feasibility of the proposed approach by examining

5 9 32
0.6

0.7

0.8

0.9

1.0

0 25 50 75 100
Generation

M
ax

im
um

 O
ve

rla
p

Fig. 8: Maximum overlap observed across generations

the maximum observable overlap across generations as shown
for one of the performed runs in Fig. 8. Based on the observed
convergence to perfectly accurate solutions (overlap: 1.0), it is
evident that the approach is capable of evolving programs that
produce quantum states of decreasing deviation to the desired
target state.

D. Discussion and limitations

This paper demonstrates the feasibility of using exist-
ing model-driven search approaches for automated quantum
program synthesis. Therefore, our studies comprise only a
minimum model that serves this purpose. For example, we
implemented only two operations as to add gates and reassign
qubits. Although the former covers the whole search space, the
exploration phase could be improved by additional procedures
or alternative implementations that specifically synergize with
the crossover operator. Similarly, we propose a simple mod-
eling language for quantum circuits. However, the language
has been designed to be extensible to cover more sophisticated
concepts required for quantum circuit design in general, as can
be derived from the replication package. Also, in our current
model, the target state input is realized by explicitly stating
the complex valued vector. Methods for convenient target state
definition will be integrated in the future.

We do not provide a performance evaluation of our proposed
approach, which would comprise, among others, hyperparam-
eter tuning, comparison of different search algorithms, and
effects of additional transformation rules. Furthermore, we
cannot provide generalizing statements, which would require
the investigation of multiple quantum circuit use cases. We
leave the according study of performance and scalability of our
proposed approach as future work. However, as the proposed
approach foresees the use of quantum simulators for direct
access of the quantum state, the current scope is for small
quantum circuits. Although the use of real quantum devices
is possible in principle, reading an arbitrary quantum state by
means of state tomography comes with exponential cost and,
thus, also limits the scalability of the approach [51].

Finally, the investigated use case represents a very small
quantum program example, where only a few trade-off so-
lutions are produced. Furthermore, during the search process
MOMoT would keep only one individual when the case of

equal fitness values is encountered. This further shrinks the
final solution set and limits the diversity study of obtained
individuals. We keep investigations on larger use cases with
more evaluations and larger solution sets (e.g., as provided
in [23]) as future work.

V. RELATED WORK

MDO applications. Latest advancements concern the search
methods and operators used, and frameworks that support
the modeling and optimization workflow [5], [7], [52]–[56].
Application areas include production lines, modularization
tasks, and refactoring [56], [57]. Furthermore, a model op-
timization engine was used as part of a digital twin in runtime
simulations [58]. In substitution of search methods, learning-
based techniques for rule transformations have been adapted
and applied in several case studies [59].

MDE for QC. Modeling approaches for the design of
quantum software have been suggested, where a UML [60]
extension for the addition of basic quantum elements is
proposed [61]. Furthermore, the use of UML-profiles [62], a
conceptual model of quantum programs [12], and software
modernization towards quantum software using MDE meth-
ods [13], [14] have been suggested. However, we are not
aware of any approach which utilizes techniques from MDE
for automated quantum program synthesis.

Evolutionary quantum circuit synthesis. Evolutionary ap-
proaches have been applied to automatically synthesize quan-
tum programs [18], [63], [64]. To consider the trade-off
between accuracy and computational cost present in the
NISQ-era, multi-objective genetic programming approaches
have been proposed, which are applicable to parameterized
as well as non-parameterized quantum circuits [22], [23].
The approach proposed in [23] served as a basis for the
fitness evaluation and parameter optimization conducted for
this study. All mentioned approaches represent tailor-made
solutions, whereas the approach proposed in this paper comes
with the integration into MDO frameworks and no need for a
direct encoding.

VI. CONCLUSION

This paper presented how MDO approaches, in particular
MOMoT, can be applied to the problem of automated quan-
tum program synthesis. We show how MOMoT can interact
with quantum SDKs in order to provide the quantum-specific
functionalities. Compared to tailor-made solutions for quantum
program synthesis, this enables to use the features of existing
MDO frameworks. Finally, we demonstrate the use of the
overall framework for the Grover Search use case.

Future work. In the future, we plan to conduct evalua-
tions of our proposed approach analogously as conducted
previously using tailor-made solutions [23]. Second, we plan
to extend the quantum circuit modeling language to capture
more concepts for quantum circuit design. Partially based
on such new concepts, we will also study the impact of
further transformation rules for the search space exploration.
Third, we will experiment with different search algorithms

provided in MOMoT. Forth, we will complete the envisioned
workflow depicted in Fig. 2 by defining the transformations
from quantum circuits declared in specific quantum SDKs to
the generic model representation.

ACKNOWLEDGEMENT

Financial support by the Austrian Federal Ministry for
Digital and Economic Affairs and the National Foundation for
Research, Technology and Development and by the Austrian
Science Fund (P 30525-N31) is gratefully acknowledged.

DATA AVAILABILITY

All code and data is available at: https://github.com/
cdl-mint/automated-quantum-program-search

REFERENCES

[1] L. Burgueño, J. Cabot, S. Li, and S. Gérard, “A generic LSTM neural
network architecture to infer heterogeneous model transformations,”
Softw. Syst. Model., vol. 21, no. 1, pp. 139–156, 2022.

[2] J. A. H. López and J. S. Cuadrado, “Generating structurally realistic
models with deep autoregressive networks,” IEEE Trans. Software Eng.,
vol. 49, no. 4, pp. 2661–2676, 2023.

[3] A. Barriga, L. Mandow, J. Pérez-de-la-Cruz, A. Rutle, R. Heldal, and
L. Iovino, “A comparative study of reinforcement learning techniques to
repair models,” in MODELS’20 Companion Proceedings. ACM, 2020,
pp. 47:1–47:9.

[4] A. Barriga, A. Rutle, and R. Heldal, “AI-powered model repair: an
experience report - lessons learned, challenges, and opportunities,” Softw.
Syst. Model., vol. 21, no. 3, pp. 1135–1157, 2022.

[5] A. Burdusel and S. Zschaler, “Towards scalable search-based model
engineering with mdeoptimiser scale,” in MODELS’19 Companion Pro-
ceedings. IEEE, 2019, pp. 189–195.

[6] H. Abdeen, D. Varró, H. A. Sahraoui, A. S. Nagy, C. Debreceni,
Á. Hegedüs, and Á. Horváth, “Multi-objective optimization in rule-based
design space exploration,” in ASE. ACM, 2014, pp. 289–300.

[7] R. Bill, M. Fleck, J. Troya, T. Mayerhofer, and M. Wimmer, “A local
and global tour on momot,” Softw. Syst. Model., vol. 18, no. 2, pp.
1017–1046, 2019.

[8] F. Krikava, “Solving the TTC’16 class responsibility assignment case
study with SIGMA and multi-objective genetic algorithms,” in Pro-
ceedings of the 9th Transformation Tool Contest, ser. CEUR Workshop
Proceedings, vol. 1758. CEUR-WS.org, 2016, pp. 55–60.

[9] J. Zhao, “Quantum software engineering: Landscapes and horizons,”
arXiv preprint arXiv:2007.07047, 2020.

[10] M. De Stefano, F. Pecorelli, D. Di Nucci, F. Palomba, and A. De Lucia,
“Software engineering for quantum programming: How far are we?”
Journal of Systems and Software, vol. 190, 2022.

[11] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, Second Edition, ser. Synthesis Lectures on
Software Engineering. Morgan & Claypool Publishers, 2017.

[12] S. Ali and T. Yue, “Modeling quantum programs: challenges, initial
results, and research directions,” in Proc. of the 1st ACM SIGSOFT Int.
Workshop on Architectures and Paradigms for Engineering Quantum
Soft., 2020, pp. 14–21.

[13] L. Jiménez-Navajas, R. Pérez-Castillo, and M. Piattini, “KDM to
UML Model Transformation for Quantum Soft. Modernization,” in Int.
Conf. on the Quality of Information and Communications Technology.
Springer, 2021, pp. 211–224.

[14] R. Pérez-Castillo, M. A. Serrano, and M. Piattini, “Soft. modernization
to embrace quantum technology,” Advances in Engineering Soft., vol.
151, p. 102933, 2021.

[15] E.-J. Kuo, Y.-L. L. Fang, and S. Y.-C. Chen, “Quantum ar-
chitecture search via deep reinforcement learning,” arXiv preprint
arXiv:2104.07715, 2021.

[16] K. A. McKiernan, E. Davis, M. S. Alam, and C. Rigetti, “Automated
quantum programming via reinforcement learning for combinatorial
optimization,” arXiv preprint arXiv:1908.08054, 2019.

[17] K. Murakami and J. Zhao, “Autoqc: Automated synthesis of quantum
circuits using neural network,” arXiv preprint arXiv:2210.02766, 2022.

https://github.com/cdl-mint/automated-quantum-program-search
https://github.com/cdl-mint/automated-quantum-program-search

[18] A. Gepp and P. Stocks, “A review of procedures to evolve quantum
algorithms,” Genetic programming and evolvable machines, vol. 10,
no. 2, pp. 181–228, 2009.

[19] L. Ding and L. Spector, “Multi-objective evolutionary architecture search
for parameterized quantum circuits,” Entropy, vol. 25, no. 1, 2023.

[20] F. Gemeinhardt, A. Garmendia, and M. Wimmer, “Towards model-driven
quantum soft. engineering,” in Second Int. Workshop on Quantum Soft.
Engineering (Q-SE 2021) co-located with ICSE 2021, 2021.

[21] M. A. Nielsen and I. L. Chuang, “Quantum computation and quantum
information,” Phys. Today, vol. 54, no. 2, p. 60, 2001.

[22] V. Potoček, A. P. Reynolds, A. Fedrizzi, and D. W. Corne, “Multi-
objective evolutionary algorithms for quantum circuit discovery,” arXiv
preprint arXiv:1812.04458, 2018.

[23] F. Gemeinhardt, S. Klikovits, and M. Wimmer, “Hybrid multi-objective
genetic programming for parameterized quantum operator discovery,” in
Companion Proc. Genetic and Evolutionary Computation Conference
(GECCO), 2023.

[24] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin:
Advanced Concepts and Tools for In-Place EMF Model Transforma-
tions,” in Proceedings of the 13th International Conference on Model
Driven Engineering Languages and Systems (MODELS). Springer,
2010, pp. 121–135.

[25] Y. Zhu and K. Yu, “Artificial intelligence (ai) for quantum and quantum
for ai,” Optical and Quantum Electronics, vol. 55, no. 8, p. 697, 2023.

[26] D. C. Schmidt, “Model-driven engineering,” Computer, vol. 39, no. 2,
p. 25, 2006.

[27] K. Czarnecki and S. Helsen, “Feature-based survey of model transfor-
mation approaches,” IBM Syst. J., vol. 45, no. 3, pp. 621–646, 2006.

[28] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse
Modeling Framework. Addison Wesley, 2008.

[29] G. Chen, D. Church, B. Englert, M. Zubairy et al., “Mathematical mod-
els of contemporary elementary quantum computing devices,” Quantum
Control: Mathematical and Numerical Challenges, vol. 33, pp. 79–117,
2003.

[30] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quan-
tum, vol. 2, p. 79, 2018.

[31] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea,
A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke et al.,
“Noisy intermediate-scale quantum (NISQ) algorithms,” arXiv preprint,
2021.

[32] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii,
J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al., “Variational
quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–
644, 2021.

[33] W. Lavrijsen, A. Tudor, J. Müller, C. Iancu, and W. De Jong, “Classical
optimizers for noisy intermediate-scale quantum devices,” in Int. Conf.
on quantum computing and engineering (QCE). IEEE, 2020.

[34] X. Bonet-Monroig, H. Wang, D. Vermetten, B. Senjean, C. Moussa,
T. Bäck, V. Dunjko, and T. E. O’Brien, “Performance comparison of
optimization methods on variational quantum algorithms,” arXiv preprint
arXiv:2111.13454, 2021.

[35] F. Leymann and J. Barzen, “The bitter truth about gate-based quantum
algorithms in the NISQ era,” Quantum Science and Technology, vol. 5,
no. 4, p. 044007, 2020.

[36] K. Guy and G. Perdue, “Using reinforcement learning to optimize
quantum circuits in the presence of noise,” Fermi National Accelerator
Lab.(FNAL), Batavia, IL (United States), Tech. Rep., 2020.

[37] M. Pirhooshyaran and T. Terlaky, “Quantum circuit design search,”
Quantum Machine Intelligence, vol. 3, no. 2, pp. 1–14, 2021.

[38] E. Ye and S. Y.-C. Chen, “Quantum architecture search via continual
reinforcement learning,” arXiv preprint arXiv:2112.05779, 2021.

[39] L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, “Genetic
programming for quantum computers,” Genetic Programming, pp. 365–
373, 1998.

[40] ——, “Quantum computing applications of genetic programming,” Ad-
vances in genetic programming, vol. 3, pp. 135–160, 1999.

[41] A. Bautu and E. Bautu, “Quantum circuit design by means of genetic
programming,” Romanian Physics, vol. 52, no. 5-7, pp. 697–704, 2007.

[42] F. Gemeinhardt, A. Garmendia, M. Wimmer, and R. Wille, “A model-
driven framework for composition-based quantum circuit design,” https:
//se.jku.at/felix-gemeinhardt/?se variable=2, 2022.

[43] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, “Expressibility and entan-
gling capability of parameterized quantum circuits for hybrid quantum-

classical algorithms,” Advanced Quantum Technologies, vol. 2, no. 12,
p. 1900070, 2019.

[44] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam, 1995.

[45] M. S. ANIS et al., “Qiskit: An open-source framework for quantum
computing,” 2021.

[46] C. Developers, “Cirq,” Apr 2022, see full list of authors on Github:
https://github.com/quantumlib/Cirq/graphs/contributors.

[47] A. Gilliam, S. Woerner, and C. Gonciulea, “Grover adaptive search for
constrained polynomial binary optimization,” Quantum, vol. 5, p. 428,
2021.

[48] C. Durr and P. Hoyer, “A quantum algorithm for finding the minimum,”
arXiv preprint, 1996.

[49] C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath,
and C. Monroe, “Complete 3-qubit grover search on a programmable
quantum computer,” Nature communications, vol. 8, no. 1, pp. 1–9,
2017.

[50] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part i: solving problems with box constraints,” IEEE transactions on
evolutionary computation, vol. 18, no. 4, pp. 577–601, 2013.

[51] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross,
S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu, “Efficient
quantum state tomography,” Nature communications, vol. 1, no. 1, p.
149, 2010.

[52] A. Burdusel, S. Zschaler, and D. Strüber, “MDEoptimiser: a search
based model engineering tool,” in Companion Proceedings of the 21st
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems (MODELS). ACM, 2018, pp. 12–16.

[53] A. Burdusel, S. Zschaler, and S. John, “Automatic Generation of Atomic
Consistency Preserving Search Operators for Search-Based Model En-
gineering,” in Proceedings of the 22nd ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS).
IEEE, 2019, pp. 106–116.

[54] S. John, A. Burdusel, R. Bill, D. Strüber, G. Taentzer, S. Zschaler, and
M. Wimmer, “Searching for Optimal Models: Comparing Two Encoding
Approaches,” J. Object Technol., vol. 18, no. 3, pp. 6:1–22, 2019.

[55] J. Martinez, D. Strüber, J. M. Horcas, A. Burdusel, and S. Zschaler,
“Acapulco: an extensible tool for identifying optimal and consistent
feature model configurations,” in 26th ACM International Systems and
Software Product Line Conference (SPLC). ACM, 2022, pp. 50–53.

[56] J. M. Horcas, D. Strüber, A. Burdusel, J. Martinez, and S. Zschaler,
“We’re not gonna break it! consistency-preserving operators for efficient
product line configuration,” IEEE Trans. Software Eng., vol. 49, no. 3,
pp. 1102–1117, 2023.

[57] M. Fleck, J. Troya, and M. Wimmer, “Towards generic modularization
transformations,” in Companion Proceedings of the 15th International
Conference on Modularity. ACM, 2016, pp. 190–195.

[58] M. Eisenberg, D. Lehner, R. Sindelár, and M. Wimmer, “Towards
reactive planning with digital twins and model-driven optimization,” in
ISoLA, ser. LNCS, vol. 13704. Springer, 2022, pp. 54–70.

[59] M. Eisenberg, H. Pichler, A. Garmendia, and M. Wimmer, “Towards
reinforcement learning for in-place model transformations,” in 24th
International Conference on Model Driven Engineering Languages and
Systems. IEEE, 2021, pp. 82–88.

[60] OMG, “UML,” https://www.omg.org/spec/UML/, 2017.
[61] C. A. Pérez-Delgado and H. G. Perez-Gonzalez, “Towards a quantum

soft. modeling language,” in Proc. of the IEEE/ACM 42nd Int. Conf. on
Soft. Eng. Workshops, 2020, pp. 442–444.

[62] R. Pérez-Castillo, L. Jiménez-Navajas, and M. Piattini, “Modelling
quantum circuits with UML,” in 2nd IEEE/ACM International Workshop
on Quantum Software Engineering, Q-SE@ICSE 2021, Madrid, Spain,
June 1-2, 2021. IEEE, 2021, pp. 7–12.

[63] U. Ahsan et al., “AutoQP: Genetic Programming for Quantum Pro-
gramming,” in 2020 17th International Bhurban Conference on Applied
Sciences and Technology (IBCAST). IEEE, 2020, pp. 378–382.

[64] K. M. Barnes and M. B. Gale, “Meta-genetic programming for static
quantum circuits,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2019, pp. 2016–2019.

https://se.jku.at/felix-gemeinhardt/?se_variable=2
https://se.jku.at/felix-gemeinhardt/?se_variable=2
https://www.omg.org/spec/UML/

	Introduction
	Background
	The MOMoT Framework
	Quantum Computing: The Circuit Model
	Automated Quantum Program Synthesis
	Synopsis

	Approach
	Overview
	Model-Driven Optimization
	Fitness Objectives and Parameter Optimization
	Tool Support

	Demonstration
	Use case description: Grover Search
	Experimental setup and user inputs
	Demonstration results
	Discussion and limitations

	Related Work
	Conclusion
	References

