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Abstract. This article presents CREST, a novel domain-specific lan-
guage for the modelling of cyber-physical systems. CREST is designed for
the simple and clear modelling, simulation and verification of small-scale
systems such as home and office automation, smart gardening systems
and similar. The language is designed to model the flow of resources
throughout the system. It features synchronous system evolution and
reactive behaviour. CREST’s formal semantics allow real-valued time
advances and the modelling of timed system evolution. The continuous
time concept permits the precise simulation of future system behaviour
by automatically calculating next transition times. We present CREST
in a practical manner, and elaborate on the Python-based DSL imple-
mentation and simulator.

1 Introduction

Cyber-physical systems (CPS) are combinations of software components, that
perform computation, and hardware interfaces, such as sensors and actuators,
which connect the system to the physical world. Enabled by inexpensive hard-
ware, applications such as home and building automation, or more generally the
Internet-of-Things (IoT), are recent and popular manifestations of CPS which
offer the possibility to digitally control large parts of our lives. This recent pro-
liferation requires more trust in CPS’ correctness.

Classical CPS domains such as aviation and transport, heavy industry as
well as large-scale and complex systems using dedicated formalisms, languages
and tools to control, simulate and verify their systems. While these solutions are
commonly used by financially potent institutions, creators of small and custom
systems often lack the knowledge and resources to use such tools. The goal of
our project is to give these people the means to easily model and check their
CPS.

In this article we present the Continuous REactive SysTems (CREST) lan-
guage. CREST is a domain-specific language (DSL) created for the modelling
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of small-scale CPS such as home, office and building automation, automated
gardening systems and similar. The language particularly emphasises the simple
representation of three CPS aspects: 1. the continuous flow of physical resources
(e.g. light, heat, electricity) and data signals (e.g. on/off switches, control com-
mands) within a system; 2. the state-based behaviour of CPS components; and
3. the evolution of a system over time.

CREST’s strictly hierarchical system view encourages composition and system-
of-systems designs. The formal language semantics guarantee a synchronous rep-
resentation and evolution of the model, while still preserving dynamic behaviour.
It features arbitrary time granularity, as opposed to fixed time steps, and hence
avoids the need for ticks commonly used in other languages. CREST is im-
plemented as an internal DSL in Python1, which means that it uses Python’s
execution environment and language as a foundation.

The rest of the paper is structured as follows: Section 2 provides related work
and the reasoning behind the choice of designing a new DSL, instead of using ex-
isting solutions. Section 3 introduces the CREST language, its graphical syntax
and semantics. Section 4 outlines the CREST’s Python-based implementation,
the interactive modelling environment and simulation capabilities. Section 5 con-
cludes and discusses future work.

2 Motivation and Related Works

Over the years, a large number of formalisms, languages and tools have been
developed to aid the modelling and verification of systems. Even though each
one of them has its own, clear strengths, oftentimes the choice of one is not
trivial and requires trade-offs. In order to find the most appropriate candidate
for the modelling and simulation of CPS such as the ones described above, we
performed a requirements analysis, collecting the properties of the target systems
and comparing them to the available solutions.

For this evaluation we assumed three different case studies that should be
modelled. The first one, a smart home system includes solar panels, a battery
and an standard electricity mains for power supply, a water boiler, shower and
various home appliances (e.g. IoT vacuum cleaner, TV, dishwasher). Next, an
office system that features automated light and temperature regulation based on
presence sensors, environmental sensors and work schedules. The third system
is an automated gardening systems that uses a relay to control growing lamps
and a water pump to automatically grow plants inside a home. Measurements
are performed using light, temperature and soil moisture sensors.

Such systems require a modelling language/tool that is capable of represent-
ing the flow of physical influences (e.g. light, water, electricity) between compo-
nents, additional to expressing the component’s state and evolution over time.
Next to structural considerations, an analysis of the systems’ behaviour was per-
formed. This exploration led to the discovery of six key aspects that should be
supported by the chosen language/tool:

1 https://www.python.org/
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1. Locality. Despite the exchange of data and resources, system components
usually have states and data that should remain local. As an example we
can think of a lamp. Its state, life-time and power consumption are local
attributes, independent of other components. Interaction occurs through a
well-defined interface, i.e. the power plug and switch.

2. Continuous Time. Most CPS deal in some way with timing aspects. Plants
require a certain amount of light per day, water consumption is measured per
minute, etc. Ideally, the chosen formalism will allow arbitrary (real-valued)
time steps so that all points in time can be analysed (not just the ones that
coincide with ticks). The time concept has to support continuous influences
between components (e.g. a pump filling a water tank).

3. Synchronism. While some changes happen over time, most effects are im-
mediate. For example, a room is (virtually) immediately illuminated by a
lamp. The actual time delay is negligible for our target applications. Even
for energy saving lamps, whose luminosity increases over time, the transition
to the on-state and dissipation of light starts immediately. The synchronism
concept requires that as soon as a value changes, the entire system is syn-
chronised and checked for possible changed influences between components.

4. Reactivity. The goal of CPS is to model components and systems that react
to changes in their environment. When the sun sets, a home automation
system should adapt and provide another light source.

5. Parallelism and Concurrency. While synchronism and reactivity prescribe
each individual subsystem’s behaviour, CPSs consists of many components
acting in parallel. A tripped fuse shut down all electrical appliances at the
same time.

6. Non-determinism. When it comes to real-world applications the evolution of
a system is not always predictable. For example, the communication between
wireless components can temporarily fail. It should be possible to model
these scenarios.

This list served as a reference guide for the search of a suitable language.
Additionally to the above properties we took properties such as simplicity, ex-
pressiveness and availability of formal semantics into account. Lastly, we are
interested in the usability and suitability for our target domain, i.e. how it al-
lows the expression of the data types and concepts required by our systems, as
well as the complexity of the created solutions. The rest of this section presents
the tools and languages that were evaluated before choosing to develop CREST.

2.1 Evaluation of Existing Tools and Languages

The modelling of software systems has been dominated by languages such as
UML 2 and SysML [19]. Despite their versatility in the software world, their
support for physical systems is rather limited. They lack important embedded
systems concepts such as real-time behaviour and timing constraints. Extensions,
such as the MARTE UML profile [18] aim to provide those missing features, at
the cost of added complexity. MARTE for example provides a very complex



web of languages, which makes the modelling of simple systems (e.g. home au-
tomation) complicated and time consuming. UML also entails an often-criticised
architectural focus, which is necessary for efficient CPS modelling.

Architecture Description Languages (ADLs) such as AADL [9] are designed
to overcome this problem by modelling systems using architectural component
and connector views. However, in most cases they focus on pure architectural
concepts and do not support behavioural concepts. CREST in contrast aims to
merge the behavioural and architectural side. Extensions to ADLs have been
proposed to overcome this shortcoming. AADL’s Behavioural Annex [11] and
MontiArcAutomaton (MAA) [22] extend the capabilities of AADL and Mon-
tiArc [12], respectively, and allow modelling of CPS using automata. While these
extension do add the missing behavioural features, AADL’s extension lacks a for-
mal basis and MAA only supports the time-synchronous or cycle-based (tick)
evolution and lacks support of clocks and similar time concepts. Further, MAA
uses MontiArc’s asynchronous message passing system and hence contradicts
our synchronism requirement.

Hardware Description Languages (HDLs) such as VHDL [1] and Verilog [23]
have been successfully used to model System-on-Chip designs and embedded
systems from a functionality level down to the Transaction-Level Modeling and
Register-Transfer Level. The C++-based and IEEE standardised SystemC [3]
language is a valuable addition to the HDL domain. All three languages offer
design as modules, events and message passing between ports, and allow for
the storage of data. Aptly named, HDLs mostly target low-level systems and
provide built-in support for embedded concepts (e.g. mutex, semaphores, four-
valued logic) and measure time in sub-second granularity (e.g. picosecond). Most
tooling and verification support only focuses on the generation and verification
of TLM and RTL level designs, which is too low-level for our purposes. Another
caveat is, that the language’s semantics are not formally defined.

The Specification and Description Language (SDL) [10] is a strong candidate
for the modelling of the systems such as ours. It provides hierarchical composition
of entities (called agents) and behaviour using extended finite state machines. Its
design is reactive, agents can perform their processing upon input signal receipt.
Timing constraints can be modelled using timers that also trigger a signal upon
expiration. SDL’s rigorous formal basis is a compelling advantage that allows
formal verification (e.g. [24]) and tool-independent simulation. SDL’s weak point
with respect to our requirements, is that all SDL signals are asynchronous. This
goes against our view of CPS, where influences and signals are synchronous.

The family of synchronous languages, such as Lustre [13] or Esterel [2], is
commonly employed in the field of reactive systems. A synchronous module
waits for input signals acts upon them instantaneously and produces output sig-
nals. It is assumed that the reaction (i.e. computation) of a module is infinitely
fast and hence no time passes during execution. One caveat however is, clas-
sical synchronous systems do no have a notion of time. In order to introduce
this concept an external clock has to be defined as signal input. Recently as a
Lustre-based extension, Zélus [4] overcomes this limitation by adding support



for ordinary differential equations that model continuous behaviour. However,
just as Lustre, Zélus’ suffers from a steep learning curve and difficult syntax.

The CPS in our case studies consist in several components with state-based
behaviour, where the component behaviour can change as time passes. This
definition is close to the hybrid automata (HA) formalism [21]. HA contain a
finite state automaton and model continuous evolution via variables that evolve
according to ordinary differential equations (ODE). Transitions are executed
according to state invariants and transition conditions. The popularity of HA
and hybrid systems (HS) resulted in the development of many languages and
tools, such as Simulink/Stateflow [7], HyVisual [5], Modelica, etc. Simulink is
the de-facto industry standard of CPS modelling. It is possible to hierarchically
design nonlinear, dynamic systems, using different time concepts (e.g. nonlin-
ear, discrete, continuous). Stateflow adds a reactive finite state machine concept
to Simulink. Neither Simulink nor Stateflow have formal semantics defined, al-
though proposals exist (e.g. [14]). HyVisual is based on Ptolemy II [20] and
allows the definition of hybrid systems with causal influences. It has, contrary to
Simulink, a formal operational semantics that can be leveraged for simulation.
However, HyVisual’s only features a graphical syntax that can become complex
to interact with.

A thorough study of HS tools and languages is given in [6] where Carloni et al.
use two well-known case studies for their evaluation. The authors also compare
tools for the verification of HS, which is a complex task in general where many
properties are undecidable [15]. The drawback of HS is their complexity and
required familiarity with the formalism. HS however, serve as a possible transpi-
lation target of CREST models so they are used for verification and validation.

The knowledge gathered from these evaluations led us to the conclusion that
the modelling of small CPS cannot conveniently be done by using the previ-
ous formalisms. The analysed languages and tools either target other domains
(UML, HDL, ADL) or lack vital concepts (e.g. time in MontiArcAutomaton).
The most promising candidates, the hybrid systems applications either lack for-
mal semantics for verification purposes (Simulink, Modelica) or lack usability
(e.g. HyVisual’s graphical modelling environment, as pointed out in [6]). A sub-
set of evaluation results is compared in Table 1.

3 CREST Language

The decision to develop CREST is based on the recognition that none of the eval-
uated candidates fills the need of a formal language meeting our requirements.
CREST is the result of combining the most useful concepts of other systems
languages, adapted to increase simplicity and usability. This section introduces
CREST’s graphical syntax and outlines its semantics. For spatial reasons we can-
not provide the formal definition and semantics, but refer the interested reader
to the detailed technical report [17].

We will use the concrete example of a growing lamp to introduce the indi-
vidual CREST concepts. Our growing lamp is a device that is used for growing
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UML (MARTE) 3 3 3 3 3 3 3 7 3 7

AADL + Beh.Ann 3 3 3 3 7 3 7 ∼ 3 7

MontiArcAutomaton 3 7 7 3 3 3 3 ∼ 3 3

SystemC 3 7 ∼ 3 7 ∼ 7 ∼ 3 7

SDL 3 3 7 3 3 3 3 3 3 3

Esterel 3 7 3 3 3 7 3 ∼ ∼ ∼
Zélus ? ∼ 3 3 ? ? 3 7 ∼ ∼
Simulink/Stateflow 3 3 7 3 3 3 7 ∼ 3 3

HyVisual 3 3 3 3 3 3 3 ∼ 3 ∼
Modelica 3 3 ∼ 3 3 3 7 7 3 ∼
CREST 3 3 3 3 3 3 3 3 ∼ 3

Table 1: Evaluation of a selection of candidates for modelling of small-scale CPS.
Symbol meaning: 3(Yes), 7(No), ∼(to a certain extent), ?(not fully known)

plants indoors. When turned on, it consumes electricity and produces light.
There is also a function where the lamp converts electricity into heat. This fea-
ture is controlled by an additional switch.

3.1 CREST syntax

CREST’s graphical syntax, called CREST diagram, was developed to facilitate
the legibility of architecture and behaviour within the system. Figure 1 displays
the complete CREST diagram of the growing lamp.

In CREST, each component clearly defines its scope. Visually this is repre-
sented by a black border, showing the scope’s limits. The component’s commu-
nication interface is drawn on the edge of this scope, while the internal structure
and behaviour are placed on the inside.

System Structure CREST enforces the view that all CPS are defined as hi-
erarchical compositions. This concept is by expressed by defining components
(“entities”) in a nested tree-structure. A CREST system contains one, sole
root entity. This entity can define arbitrarily many subentities, which can also
contain children, etc. The growing lamp for example, consists of two separate
modules, one for light (LightElement), one for heating (HeatElement). Both
are embedded within the GrowLamp entity.

The strict hierarchy concept asserts a simplified, localised view on an entity
level. Each entity encapsulates its internal structure and allows us to treat it as
a black box. This black box view facilitates composition, as the entity’s parent
can treat it as coherent instance, disregarding the inside.



�GrowLamp�

electricity:
0 (RWatt)

switch:
off ({on, off}Switch)

heatswitch:
off ({on, off}Switch)

room-temperature:
71.6 (RFarenheit)

light:
0 (NLumen)

temperature:
22 (RCelsius)

OnOff

on-guard

off-guard
on-time:

0 (RTime)

on-count:
0 (RTime)

update on time

inc
rem

ent
cou

nt

�LightElement�

electricityL:
0 (RWatt)

lightL:
0 (NLumen)

OnL OffLon-guardL

off-guardL

off update

on update

�HeatElement�
electricityH :
0 (RWatt)

switch:
off ({on, off}Switch)

heatH :
0 (RCelsius)

State

heat output
�Adder�

heat-in:
0 (RCelsius)

temp-in:
22 (RCelsius)

temperatureA:
22 (RCelsius)Add

add

light electricity zero

heat electricity zero

update light electricity

update heat electricity

fahrenheit to celsius

Fig. 1: A growing lamp entity with subentities.

The black box view is completed by the definition of an entity’s communica-
tion interface, which consists of input and output ports. Ports are
required for the modelling of the flow of resources through the system.

CREST specifies a third kind of port: locals . This port type is not part
of the interface, but rather serves as internal storage of data. In the example
we see on-time and on-count as internal ports. All three types of port are
associated with a particular resource.

In CREST, resources are value types consisting of a value domain and a
unit (formally Domain× Unit). The growing lamp specifies units such as Watt
or Lumen. Domains are sets of values, e.g. the natural numbers N, rationals R
or a set of discrete values such as {on, off} (for Switch in the example). Next to
resources, each port specifies a value from its resource as its current value.

Entity Behaviour CREST uses finite state machines (FSMs) to specify be-
haviour. Each entity defines a set of states and guarded transitions between
them. Transitions relate source states with target states and the names of transi-

tion guards (e.g. off on
on-guard

). The transition guard implementations are func-

tions that take an entity’s set of port value bindings bind (and previous port
bindings pre) as parameters and returns a Boolean (True, False) value indicat-
ing whether the transition is enabled or not. Note that CREST does not provide
a syntax for the definition of guard functions. Instead, the formal syntax pre-
scribes the function signature and leaves the implementation of a guard language



under-specified for flexibility2. Mathematically, the behaviour of on-guard could
be specified using the following formula:

on-guard(bind , pre)

{
False if bind(electricity) < 100Watt

True if bind(electricity) > 100Watt

Formally bind and pre are defined as functions that applied onto a port return
the port’s value.

Note, that the concept of previous values is required for two reasons: First,
it can be used to discover and analyse ports’ value changes (i.e. bind(port) 6=
pre(port)). Second, in certain situations it can be used to resolve algebraic loops,
which otherwise could not be supported in CREST. The concept of supporting
previous values is present as pre operator in other languages such as Modelica,
Lustre and Esterel. In CREST’s implementation pre is automatically managed
for the user and in certain cases automatically used when necessary.

Resource flow Resource transfers between ports can be modelled using up-
dates ( ). Updates are defined using a state, a target port and an update
function name. If the automaton is in the specified state, the update function
(identified by its name) is executed, modelling continuous changes. The function
itself returns the target port’s new value binding. Self-evidently the returned
value has to be in the domain of the target port. Conceptually, updates are
continuously executed so that the system’s ports always hold the latest val-
ues. Practically, CREST’s simulator asserts that the evaluations are performed
when necessary, as explained below. The growing lamp defines several updates,
such as update on time, update light electricity (both in GrowLamp) or
heat output (in HeatElement). Updates enforce CREST’s synchronism princi-
ple. Provided the automaton is in the update’s matching state, the continuous
evaluation of update functions guarantees that the target port’s value is the re-
sult of the update function execution, without delay or explicit message passing.

Similar to transition guards, the update functions’ syntax is under-specified
but constrained by a required signature. Update functions are executed with the
current and previous port bindings bind and pre and additionally have access
to another parameter δt. It is a value of the system’s time-base T and holds
the information about the amount of time that has passed since entering the
associated FSM state. Hence, update functions can be used to model continuous
behaviour and value updates. In the growing lamp’s example the time-base is
rational (i.e. T = R). As an example we provide the mathematical definition
of update on time, which continuously accumulates the amount of time the
automaton spent in time on:

update on time(bind, pre, δt) = pre(on-time) + δt

2 Section 4 shows how Python is used as a host language for implementing transition
guards and other parts of CREST.



In CPS, resources are often continuously transferred from one port to an-
other, independent of entity state or the time that has passed. In the example
above, the growing lamp’s heatswitch port value is transferred to the HeatEle-
ment’s switch input, disregarding whether the lamp is on or off. In order to
avoid the specification of the same update function for every state in the sys-
tem, CREST offers influences ( ) as a syntactic shortcut. Influences relate
a source-port to a target-port and an update function name. The behaviour of
influences is similar to updates, with the difference that only the source’s value
is considered for calculation of the target port value. Neither δt nor any other
port values are considered for the calculation. In the growing lamp the influence
fahrenheit to celsius is defined as follows:

fahrenheit to celsius(bind, pre, δt) = (bind(room-temperature)− 32) ∗ 5/9

Lastly, a third type of resource flow is offered by CREST: actions ( ).
Actions define update functions that are executed during the triggering of tran-
sitions. Similar to influences, actions are not allowed to access the δt parameter
of the related update functions. The growing lamp scenario defines one action
(increment count) that is executed when the transition from Off to On is trig-
gered. It is used to count the number of times the lamp has been switched on.

3.2 CREST semantics

Note that for spatial reasons this section only contains a short description of the
semantics. The full, formal semantics that are based on SOS rules are provided
in the technical report on CREST’s formalisation [17].

CREST’s semantics allow two basic ways of interaction with the system:
Setting of the root entity’s input values and advancing time. After either one of
these is performed, the system might be in an “unstable” state. The term unsta-
ble refers to a system where, due to the interaction a transition might become
enabled or an influence or update target port value outdated. To correct this
situation, the system has to be stabilised. Stabilisation is therefore the process
of bringing a system into a state where all influences and updates have been
executed, and no transitions are enabled.

In the following, we describe the stabilisation process after changing port
values and advancing time. Figure 2 shows a diagram that is inspired by call-
multigraphs [16]. Instead of procedure calls however, the arrows represent the
triggering of other semantic procedures.

Setting Values As stated, any external modification of input port values re-
quires a subsequent stabilisation. This means that all value modifications have to
be relayed to dependant ports through updates and influences. In the GrowLamp

example, a modification of the electricity value has to be propagated to the
corresponding inputs of the light and heat modules’ input ports. These modules
will in turn modify their respective output port values, which will then trigger
further propagation. We see that a simple value change has to be recursively



Fig. 2: An informal, schematic diagram of the semantic (sub-)processes for the
set-values and advance time actions. Arcs represent the triggering of sub-
procedures. Arc annotations represent conditional sub-procedure calls.

propagated throughout the entire entity hierarchy, starting at the root entity,
whose inputs have been modified.

In an entity it is possible that influence and updates are “chained”, meaning
that one modifier (influence, update or subentity) changes a port which is then
read by another modifier to modify a different port. Such dependencies have to
be taken into account when performing stabilisation to avoid delayed or erro-
neous value propagation. Therefore, the entity will sort the modifiers so that
modifiers which read one port, in the sorting appear after a modifier writing to
that port. The modifiers are then executed in this order, based on their type.
If the modifier is an influence or update, the specified function is executed. If
it is a subentity whose input bindings changed, the stabilisation is performed
inside that subentity. As a result of the sorting, the subentity’s inputs will have
necessarily already received their updated values (provided there are any). The
testing for changed input values, and recalculation only upon their change, en-
forces the reactivity principle that we specified as a requirement. Note, that
circular dependencies are not allowed within CREST systems. If there are any
interdependencies between values, they cannot refer to the current time period
and instead have to be expressed using a port’s pre value to break circularity.
This solution is used extensively in other languages, see Simulink’s Unit Delay
blocks and Modelica’s pre operator.

After triggering all influences and updates, one of the enabled FSM transi-
tions is executed, provided there is one. CREST does not prescribe a selection
procedure in case of multiple enabled transitions, meaning that non-determinism
may occur. If a transition was enabled and executed (including the corresponding
actions), another stabilisation is started to execute all updates that are related
to the new FSM state. This stabilisation phase will, again, look for enabled
transitions and trigger one if applicable.

The stabilisation process operates recursively. That means that if an entity
triggers a subentity stabilisation, the subentity’s modifiers are executed in order



and any transitions within that subentity are triggered (followed by stabilisa-
tions) until no transitions are enabled. Only then, the control is returned back
to the parent entity to continue. If there are several subentities that are inde-
pendent (i.e. don’t have dependencies between their inputs and outputs), they
can be safely executed in parallel, as a result of the locality principle.

Note that no time passes between the update of port values and the end of
the stabilisation process, whereas some other languages (e.g. Simulink) introduce
a small time delay at every modification. CREST’s synchronism can be found
in languages such as Esterel. CREST differs from Esterel however, in that the
entire system is stabilised instead of just the affected subset.

Advancing time The prior part of this section states that updates allow the
modification of a system over time using a δt parameter. In fact, the semantics of
advancing of time triggers the same stabilisation process as set-values, except
that while set-values uses a δt = 0, advance specifies a δt > 0 as parameter.
Further, all subentities perform the updates, independent of whether their input
values change. This asserts that the update functions are executed correctly (i.e.
according to the time parameter).

There is one particularity of time advances that has to be considered though:
CREST implements eager transition triggering. This means that a transition has
to be fired as soon as it is enabled. When advancing time however, it can occur
that the advance routine is called with a δt that is bigger than the minimum
time required to enable a transition. CREST implements a continuous time
concept, that does not foresee “ticks” as system synchronisation points at which
transition guards are evaluated. In order not to “miss” the precise moment when
a transition becomes enabled, CREST makes use of a function that attempts to
calculate the precise amount of time ntt that has to pass until any transition
will be enabled. ntt is in the range [0, . . . ,∞), where 0 states that a transition
is currently enabled (and that the system is not stabilised) and ∞ means that
no transition can become enabled by just advancing time. Note, that the next-
transition-time function depends on the implementation of updates, influences
and guards and involves complex tasks such as the creation of inverse functions
or the expression of the functions as sets of constraints. We will further discuss
this function in the next section, with the Python implementation of CREST.

The information of the next transition time ntt creates two possible scenarios:

1. ntt > δt (i.e. the time we plan to advance). CREST advances δt and the sta-
bilisation task will execute updates and transitions until reaching a fixpoint.

2. ntt < δt. CREST divides the advance into two steps: First, advance ntt,
advances until a transition is enabled. Updates and transitions are trig-
gered, followed by stabilisation. Next, CREST recurses on the remainder
(advance(δt− ntt)).

CREST’s time semantics allow the simulation and verification based on real-
valued clocks with arbitrary time advances. This is essential for the precise sim-
ulation of cyber-physical systems without the need for an artificial base-clock.



The time-based enabling of transitions extends the language and adds a con-
tinuous behaviour to the otherwise purely reactive system. Other synchronous
languages such as Lustre need external clocks to provide timing signals.

4 CREST Implementation and Simulation

While the graphical view is convenient for analysis and discussion of a system,
the creation of larger systems is more efficient when using textual represen-
tations. We therefore implemented CREST as an internal DSL in the Python
language. The concept of using a general purpose programming language as host
for another DSL is famously used by SystemC, which is implemented in C++.

We chose Python as a target language for three reasons:

1. Distribution and package installation allow easy installation and extension.
It also comes pre-installed on various operating systems.

2. It is easy to learn, flexible, has many useful libraries, and a large community.
3. Python’s internals let us alter class instantiations and hide CREST specifics

from users, while still enabling the use of the default execution engine.

4.1 PyCREST implementation

PyCREST is developed as a set of Python libraries. This means the function-
ality can be imported and used in any standard Python program. PyCREST
is developed to make use of Project Jupyter3 notebooks as an interactive de-
velopment and execution environment. Since PyCREST also features integrated
plotting utilities, it is possible to create PyCREST systems and visualise them
as CREST diagrams. In the following we provide a small excerpt that showcases
the use of PyCREST and the definition of an entity, as displayed in Listing 3.
A more complete example is provided online as an introduction to CREST4.

Entities are defined as a regular Python class that inherits from PyCREST’s
Entity. PyCREST further provides a class for each model concept (Input, State,
Update, etc.) as well as additional decorators (e.g. @influence, @transition). En-
tity ports, transitions and updates are defined as class attributes or decorated
methods as shown in the example. PyCREST also supports many other classic
Python concepts such as constructors, sub-classing, etc.

4.2 Simulation

The previous section briefly outlines the use of next-transition-time calculation.
The calculation of the exact time of system changes is vital for the correct
simulation of CREST systems, as CREST does not rely on artificial base clocks
to identify the points for recalculation of data. Instead PyCREST’s simulator
uses Microsoft Research’ Z3 [8] theorem prover to create a set of constraints that

3 https://jupyter.org/
4 https://mybinder.org/v2/gh/stklik/CREST/sam-demo/
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� �
1 class LightElement ( Entity ) :
2 # port definitions with resouces and an initial value
3 electricity = Input ( resource=Resources . electricity , value=0)
4 light = Output ( resource=Resources . light , value=0)
5

6 # automaton states - specify one as the current ( initial ) state
7 on = State ( )
8 off = current = State ( )
9

10 # transitions and guards ( as lambda s)
11 off_to_on = Trans i t i on ( source=off , target=on ,
12 guard=(lambda self : self . electricity . value >= 100) )
13 on_to_off = Trans i t i on ( source=on , target=off , \
14 guard=(lambda self : self . electricity . value < 100) )
15

16 # updates are annotations
17 @update ( state=on , target=light )
18 def set_light_on ( self , dt=0) :
19 return 800
20

21 @update ( state=off , target=light )
22 def set_light_off ( self , dt=0) :
23 return 0� �

Fig. 3: The PyCREST definition of the LightElement entity

represents the transition’s guard and searches for the minimal δt that will solve
the constraints. CREST also searches all influences and updates (“modifiers”)
that either directly or indirectly modify the transition guard, and translates
them to Z3 constraints. The creation of constraints is based on transpilation of
the modifiers’ source code. After the translation, Z3 is instructed to find the
minimum value of δt that will enable a transition. The process is repeated for
all outgoing transitions of the individual entities’ current states. Finding the
minimum of these results yields the next transition time.

Z3 turned out to be powerful and efficient enough for most of the CPS that
we defined. However, this strong dependency also imposes limitations. Z3 can
quickly find solutions to most linear constraint sets. However, some systems
define non-linear constraints. An example is the ThreeMasses problem [6], where
three masses are placed on a surface. One of the masses has an initial velocity
and bumps into the second one, which in turn bumps into the third one, shortly
after. The third mass falls off the edge of a surface and accelerates towards the
ground, off which it keeps bouncing, thus repeatedly switching from upwards
to downwards motion. The difficulty lies in the consideration of acceleration,
velocity and position of the masses in two dimensions, as well as the repeated
reduction thereof using a restitution factor.

In the presence of non-linear constraints, Z3 can only provides a solution to
the constraint set, but cannot guarantee that it is optimized (i.e. minimal or
maximal) δt value. We found, however, that the simulation is precise enough
for our purposes. The ThreeMasses system is implemented in PyCREST as a



benchmark5, displaying the capabilities of the simulator. In general, the mod-
elling of CREST systems with non-linear constraints is discouraged until an
alternative constraint solver, that adds non-linear optimisation capabilities is
introduced. Further, at the time of writing, PyCREST has no special treatment
of zero-crossings. In fact, all changes in behaviour, including zero crossings, are
executed as usual. Zeno behaviour is discouraged and usually leads to exceptions
thrown by the Python interpreter. PyCREST catches this exception and informs
the user, but does not put in place any recovery procedures.

4.3 Function Approximation

It is evident that not all functions can be translated to Z3 constraints. In fact,
only a subset of Python, consisting of variable assignments, unary and binary
operators, and conditional statements and expressions is currently supported.
Loops, recursions and function calls are not allowed in CREST.

Instead, such functions can be defined through execution traces and then
interpolated. The domains of interpolation, splines and function fitting have
been extensively studied in mathematical fields, and there exist many tools and
libraries for the creation of interpolations and splines. CREST uses Python li-
braries such as SciPy and NumPy6 for these purposes.

CREST distinguishes between influence and update approximation. Influ-
ences only depend on one particular port and are assumed to be linear in the
form A ∗ source-val + B, where A and B are the parameters to be found. The
function can be piecewise defined, e.g. as step function or as shown in Figure 4.

The approximation of update functions is more complex, as updates can
calculate a port’s new value based on all of its entity’s ports’ current and previous
bindings additionally to the δt time parameter. Despite the increased number of
parameters, CREST tries to extract a δt-linear spline from the data provided.
This is achieved by first creating an approximation of the multidimensional data
and then selecting the slice of data that represents the current port values, as
visualised by the dark slice of the multidimensional surface in Figure 5.

heat output =


0 if electricityH ≤ 0

60 if 1500 < electricityH
electricityH∗0.9

25 otherwise

Fig. 4: Piecewise Interpolation Fig. 5: Multi-variable interpolation

5 https://mybinder.org/v2/gh/stklik/CREST/sam-demo
6 https://scipy.org/ http://www.numpy.org/
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4.4 Verification

CREST’s simulation revolves around the change of a root entity’s input ports
(i.e. external input), the advance of time (i.e. internal state changes) and output
produced by these system changes. Verification on the other hand requires the
creation of the state space of the CREST system’s evolution and analysis of
execution traces. Due to the unbounded number of values of real-valued clocks,
state spaces of timed systems are unbounded or even infinitely large. A full
discussion of CREST’s verification exceeds the scope of this paper. CREST’s
approach however is closely related to hybrid systems verification [6].

5 Conclusion and Future Works

This article introduces CREST, a domain-specific language for the definition
of continuous reactive systems. CREST’s target domain is the modelling of
cyber-physical systems’ architecture and continuous timely behaviour. The de-
sign, syntax and semantics serve the six core concepts locality, continuous time
and behaviour, synchronism, reactivity, parallelism and concurrency and non-
determinism. CREST achieves this by evading the base-clock concept, while still
preserving synchronism and choosing synchronisation points based on system
behaviour. This trait permits continuous value changes, arbitrarily fine time
advances and convenient modelling on largely different time scales within the
same model. It also allows for the efficient simulation of behaviour and time.
CRESTensures a hierarchical structure that facilitates composition. The lan-
guage supports concurrency and parallelism, as they are a omnipresent in both
software and physical worlds. The automaton-based behaviour of CREST enti-
ties enables to easily capture the non-determinism and complexity of CPS.

While CREST shows promising results, we see several areas of improvement:

- Currently the calculation of the next transition time has rudimentary support
for one type of interpolation and approximation. We aim to extend our research
into different algorithms to provide better results.

- We are studying the automatic generation of controllers from CREST models.
- We are developing a property language that allows non-expert users to define

queries in a language that part of their systems. This facilitates removes the
need to know language such as LTL or CTL temporal logics.
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tion — a Case Study. Elektrotehnǐski vestnik (Electrotechnical Review) (2005)

http://www.crcpress.com/product/isbn/9780849328800
https://doi.org/10.5281/zenodo.1284561
https://www.omg.org/spec/MARTE/1.1/PDF
https://www.omg.org/spec/MARTE/1.1/PDF
https://www.omg.org/spec/SysML/1.5/PDF

	CREST - A DSL for Reactive Cyber-Physical Systems

