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Abstract—The recent decade saw enormous advances of the
capabilities of speech synthesis and speech recognition. While
specific benefits depend on the individual applications, speech
interfaces typically increase accessibility, enable “hands-free” and
“no-screen” interaction, and often increase interaction speed and
allow for more flexible usage patterns and increased multitasking,
leading to higher user satisfaction.

This paper presents a method to transfer these powerful ben-
efits to the digital twin (DT) domain by automatically generating
speech interfaces for DT applications. Our approach is based on
Model Driven Engineering principles, where we automatically
deduce command patterns from structural model information as
used in, e.g., DT platform specifications. The speech interface
generation is highly configurable and extendable, thus it can
be applied to different DT models. The concepts behind the
generator are generic as well, thus they can be ported to
other applications and platforms. We validate our approach by
applying it to two DT demonstration cases and provide a detailed
description of the sketch interface configuration workflow.

Index Terms—speech recognition, speech interfaces, model-
driven engineering, interface generation, digital twin interface

I. INTRODUCTION

Digital twins (DTs) [1] are virtual replicas of (typically)
cyber-physical systems (CPSs). In their most basic form, DTs
can be likened to Internet of Things (IoT) applications, where
a computer system provides a virtual counterpart to an actual
system’s (a.k.a. the physical twin’s) sensors and actuators, thus
displaying system measurements and offering interaction capa-
bilities. Nonetheless, modern DTs surpass these elementary ca-
pabilities and allow for much more advanced workflows such
as simulation, monitoring, system calibration and optimisation,
data analysis, and machine learning.

To aid the creation and management of DT systems, a
handful of so-called DT platforms recently emerged (e.g.,
Azure Digital Twins, AWS IoT TwinMaker and Eclipse Ditto).
These platforms provide industry-grade stability, security and
scaling [2] and offer structural modelling languages that are
reminiscent of UML’s class and object diagrams for the
systems’ configuration [3]. Recent research is working towards
bringing Model Driven Engineering (MDE) [4] research ben-
efits to these DT systems.

Nonetheless, a significant challenge of any DT application
remains the creation of an adequate and consumer-friendly
user interface (UI). CPSs nowadays reach never-before-seen

levels in terms of number of devices, complexity, and geo-
graphical and logical size, while edge devices become ever-
more intertwined with our daily lives, requiring new forms of
user interaction.

The recent decade provides major advances of speech
synthesis and speech recognition [5]. While the specific advan-
tages depend on the individual applications, speech interfaces
typically increase accessibility, enable “hands-free” and “no-
screen” interaction, often increase interaction speed and while
allowing for more flexible usage patterns and increased mul-
titasking. It is thus natural, that these advantages should also
be exploited for DT applications.

This paper presents a novel method to bring these powerful
benefits to the DT world by automatically generating a speech
interface for a DT application. Our approach is based on MDE
principles, where we automatically deduce command patterns
from structural DT model information. Specifically, we use
extended variants of UML class and object diagrams to model
the system, from which we generate the speech commands.
Users actively receive verbal feedback, providing confirmation
of correct command execution (as opposed to, e.g., silent
speech interfaces [6]). Our speech interface generation is
easily configurable and extendable so that it can be applied
to different systems. The concepts behind the generator are
generic and can be ported to other applications and platforms.

Our contributions can be summarized as follows: 1. We
provide an approach to automatically derive speech interfaces
for DT systems from structural system models, namely UML
class/object diagrams. 2. We describe three types of informa-
tion that should be added to these models to increase user-
friendliness and integration into legacy systems. Specifically,
object, attribute and operation aliases, REST endpoint defini-
tions and custom actions. 3. We apply our approach to two
DT case study systems to showcase its feasibility1.

The rest of this paper is structured as follows: Section II
provides information about the scientific background and the
DT systems we use as motivation. Section III describes the
general approach of our model-driven speech interface frame-
work. Section IV evaluates our approach. Section V compares
our framework to related work before Section VI concludes.

1See also https://youtu.be/7u45YXOH-jc
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II. BACKGROUND AND MOTIVATING EXAMPLES

A. Modelling Digital Twins

DTs are virtual replications of physical assets—often re-
ferred to as physical twins (PTs)—with a bi-directional com-
munication between the DT and the PT [1]. The DT is usually
represented as a model containing information about data
structures, geometry or physics of the PT [7]. In this paper, we
use structural information of the PT to automatically configure
the available speech interactions. We base the generated speech
interface on UML class diagrams, as they have already been
used in the literature to represent this structural aspect of
DTs [8], [3], besides other similar languages such as Automa-
tionML [9], [10].

Current interfaces focus on configurable graphical interfaces
(e.g., [11] or [12]) or RESTful APIs that can be called by
software programs, which are usually provided by industrial
DT platforms [2]. In this paper, we extend this state-of-the-art
with the advantages that come with the application of speech
interfaces for interacting with DTs.

B. Speech Interfaces

The introduction of machine learning and artificial intelli-
gence in the domain of voice-enabled personal assistant pro-
grams such as Apple’s Siri, Amazon’s Alexa and Microsoft’s
Cortana in smartphones, automobile entertainment and smart
home systems pushed their interaction capabilities to new
heights. While before, only a fixed set of strictly matched
commands was available, modern systems enable “almost
natural” voice-based system interaction.

Their popularity yields a fresh interest in porting these
capabilities to other applications and enhancing them with
native language support. Frameworks such as React Speech
Recognition2 and Web Speech API3 provide speech capabil-
ities to virtually any application on the web, and integration
platforms such as Make4 allow to easily connect these speech
capabilities with legacy systems.

Nonetheless, such frameworks typically rely on manually
crafted speech modules, which are based on careful definitions.
Our goal is to avoid this step and reuse existing information
from structural system data. This data often already exists in
the form of DT system models or can be extracted from REST
API definitions or using automated code analysis tools and
methods such as [13].

C. Motivating Examples

Our approach is motivated by the following considerations.
First, while graphical user interface (GUI) applications are
seen as the de-facto standard, they often do not provide the
required accessibility for all users. Second, new users may
often be overwhelmed with the amount of information shown
in typical CPS’ GUIs. A speech-based workflow may guide
the users more easily and create or increase familiarity. Third,

2https://www.npmjs.com/package/react-speech-recognition
3https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
4https://www.make.com/
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Fig. 1: Left: (simplified) smart room system with ventilator,
light strip and Raspberry Pi-based air quality measurements.
Right: robot system with 6-DOF robot arm and two conveyor
belts.

in certain industries or situations where people are required to
operate in synergy with robots, it is not always possible to look
at a screen or use manual input devices. Thus, a non-visual and
hands-free interaction can largely increase the applications’
usability.

In the following, we describe two example DT systems, for
which we develop speech interfaces, namely a smart room
system and a robot application (see Figure 1). Note that both
systems existed already before our research on this topic.
Hence, the speech interfaces should to be flexible enough to
accommodate for legacy design choices.

a) Robot system: Our first system is an application that
represents an industrial robot system. It consists of a Niryo
Ned5 6 degree-of-freedom (6-DOF) robot arm, equipped with a
gripper and two attached conveyor belts. The system’s purpose
is to transport objects along the conveyor belts and move them
from one conveyor to the other using the robot arm.

For simplicity, in our setting, we assume that the conveyor
belts always move in parallel, i.e. any REST command always
(de-) activates both of them. Figure 2 shows both the UML
class (2a) and object diagrams (2b), showing the system’s
devices’ capabilities (operations) and attributes.

The robot’s REST API controls were originally developed
in Python using the FastAPI and pyniryo libraries.

b) Smart room system: In our second use case, the im-
plemented DTs represent a smart room and indoor air quality
application [14]. Specifically, we use Raspberry Pis and off-
the-shelve IoT technology (smart plugs, Zigbee/MQTT, etc.)
for our application. The smart room contains an automated
lighting system (represented by an LED strip) and an air
quality system (represented by a ventilator). Additionally, it
is possible to read the air quality data from the room system.

5https://niryo.com/products-cobots/ned-six-axis-robot-arm/
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NiryoNed1

calibrated: bool
gripper_open: bool

+ calibrate()
+ ready()
+ open()
+ close()
+ pickupLeft()
+ pickupRight()
+ putLeft()
+ putRight()
. . .

Conveyor

speed: int
direction: string
is_moving: bool

+ forward()
+ backward()
+ stop()
+ slower()
+ faster()
. . .

(a) Class diagram (reduced)

robert : NiryoNed1 conveyor : Conveyor

(b) Object diagram

Fig. 2: Robot system – UML class diagram and object diagram

This system is also controlled via a REST API but addi-
tionally is connected to a database which allows the polling
of historic data (e.g., yesterday’s temperature readings).

Figure 3 displays the class and object diagrams of the
smart room system. Note the «temporal» stereotype (inspired
by [15]) which is used to represent attributes where historical
data is stored.

The use cases are implemented and published to the open
source GitHub repository, detailed descriptions for setup and
usage of the whole infrastructure can be referred from online
repository6.

Room

«temporal» co2: int
«temporal» temperature: float
«temporal» humidity: float

+ summary()

Ventilator

+ toggle()

Light

+ turn_on()
+ turn_off()
+ setColor()

(a) Class diagram (reduced)

Room0090 : Room

Licht : NiryoNed1

SmartPlug1 : Ventilator

(b) Object diagram

Fig. 3: Smart room system – UML class diagram and object
diagram

6https://github.com/derlehner/IndoorAirQuality_DigitalTwin_Exemplar
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Fig. 4: Speech Interface Workflow for DTs

III. SPEECH-BASED DT INTERACTION FRAMEWORK

A. Architecture

Figure 4 provides a general overview of the speech-based
DT interaction framework proposed in this paper. On the upper
half, we see a simplified DT application, consisting of PT,
DT REST API and a database that stores historical values.
Note that the figure omits all DT components that are not
used for the speech interface (e.g., controllers, DT services,
etc). The bottom half visualises the core of our approach,
namely the Speech IO Framework, which is configured from
(extended) class and object diagrams. This interface offers
both speech recognition (speech-to-text) and speech synthesis
(text-to-speech) functionality to enable interactions with the
available PT. The speech framework UI is connected to the
PT via the RESTful web service that offers (i) execution of
operations on the PT, (ii) access to current values for each
attribute of the PT, and (iii) access to aggregated historical
data for «temporal» attributes. Information on the available
PTs, operations and attributes of these PTs, as well as the
mapping of this information to the specific REST endpoints
that have to be called to get this data, are all extracted from the
speech interaction model, i.e., the class and object diagrams.

B. The Speech Interaction Model

The basic interaction functionality is directly extracted from
the UML class and object diagrams. For simplicity, in this
publication, we presume that each diagram is available as one
individual file. Furthermore, our model is assumed to be in a
highly simplified JSON format, as exemplified in Listing 17.
Note that we expect that in actual production systems, the
information will be extracted from standardized formats such
as EMF’s XML/XMI [16] or JSON artefacts [17].

Using the information from the diagrams, the app automat-
ically configures the speech interface to listen to the following
commands:
Device list: The app can produce a list of all known devices
(taken from the object diagram).
Device type: We treat the UML classes as device types.
Mentioning a device type yields a list of devices of this type,
as defined in the object diagram.

7The full models are available on Github: https://github.com/cdl-mint/
SpeechInterface_DigitalTwins/tree/main/src/UML_Models

https://github.com/derlehner/IndoorAirQuality_DigitalTwin_Exemplar
https://github.com/cdl-mint/SpeechInterface_DigitalTwins/tree/main/src/UML_Models
https://github.com/cdl-mint/SpeechInterface_DigitalTwins/tree/main/src/UML_Models


Device name: When a device name (i.e., an element of the
object diagram) is mentioned without any further information,
the app responds with the available operations and attributes.
Device operations: A device name + an operation name
results in calling that operation.
Device attributes: Device name + an attribute will fetch the
attribute’s current value.
Attribute aggregation: By mentioning a device, an attribute
and an aggregator (e.g., mean, minimum, maximum) the
historic data is aggregated. This can be further customized by
mentioning certain time spans (e.g., today, yesterday, this/last
week).

All the information for these interactions can be auto-
matically extracted from the system models, rendering our
approach flexible and easily maintainable.

a) Extensions: Additionally to the extraction of e.g.
device and operation names, we discovered that the speech
interface requires additional information. This enables both
the configurability for legacy systems, but also increases user-
friendliness. In particular, we added the following three types
of information to the UML diagrams.

Extension 1: Class, attribute & operation name aliases.
We note that next to the default name (e.g. an ID or function
name), in many cases is is convenient to use “friendly names”
for devices and operations (e.g. we might prefer to say “living
room lamp” instead of “SmartLamp003”). Furthermore, it can
become tedious to remember exact operation and attribute
names. Aliases may be easily added to offer alternative names
and thereby increase usability. For instance, we may “flick”,
“switch” or “toggle” our ventilator, and it will every time
trigger the same action. Similarly, “velocity” and “speed”
will poll the same attribute of the conveyors, and a robot arm
should perform the same action, independent of whether we
tell it to “put down” or “place” the object it is holding. It is
important, though, that aliases should be unique to a class.
Extension 2: Mapping to API endpoints. As the speech in-
terface is being developed for legacy applications, we note
that these systems contain “legacy design choices”. Hence, the
speech interaction models might not exactly match the existing
REST API endpoints. The models can thus be extended by
providing specific endpoint information for each attribute
and operation, thereby allowing users to maintain compatibil-
ity with these systems. Similarly, a data field can be used to
add necessary REST payload data.
Extension 3: Custom actions. In some situations, users may
choose to implement customized actions for specific calls.
For instance, the light strip in our smart room system can
change the colour of the light. To enable this functionality, we
thus provided a custom function that converts common colour
names to the RGB format that is required by the API.

Note that Extensions 2 and 3 are of particular interest for
systems where the REST API cannot be easily changed. These
include legacy systems or systems that are not under control
of the speech interface developer.

Listing 1: Speech interaction model – class diagram (excerpt)
1 [ {
2 " name " : " Conveyor " ,
3 " e x t e n d s " : " Device " ,
4 " a t t r i b u t e s " : [ {
5 " name " : " speed " ,
6 " t e m p o r a l " : f a l s e ,
7 " a l i a s e s " : [ " v e l o c i t y " ] ,
8 " t y p e " : " i n t " ,
9 " e n d p o i n t " : " / Robots / Conveyor " ,

10 " a c t i o n " : " R o b o t A t t r i b u t e "
11 } ,
12 . . . −− more a t t r i b u t e s
13 ] ,
14 " o p e r a t i o n s " : [ {
15 " name " : " run " ,
16 " a l i a s e s " : [ " move " , " on " , " s t a r t " ] ,
17 " a c t i o n " : " Robo tAc t ion " ,
18 " e n d p o i n t " : " / Robots / Conveyor / " ,
19 " d a t a " : { " f o r w a r d " : t r u e , " on " : t r u e

}
20 } , {
21 " name " : " moveback " ,
22 " a l i a s e s " : [ " back " , " backward " ] ,
23 " a c t i o n " : " Robo tAc t ion " ,
24 " e n d p o i n t " : " / Robots / Conveyor / " ,
25 " d a t a " : { " f o r w a r d " : f a l s e , " on " : t r u e

}
26 } ,
27 . . . −− more o p e r a t i o n s
28 ] } ,
29 . . . −− more d e v i c e t y p e s h e r e
30 ]

C. Implementation & Technical Realization

To evaluate our approach, we developed a prototype appli-
cation that builds upon web technologies, specifically Node.js
and React.js to build the proposed Speech IO Framework. For
the speech recognition, we use a client-side, browser-based
speech-to-text API8 that is easy-to-use and offers solid speech
recognition capabilities.

The mapping of spoken text to actual commands is based
on word-by-word matching of texts, testing if the commands’
keywords, and any device, operation or attribute names/aliases
are present in the transcripts of the voice input. After matching
the recognised transcript against the above commands on
a “first-match” basis, the application performs the required
REST calls to the DT API and provides speech-based user
feedback using the browser’s speech output functionality.
This DT API is implemented in phyton, using a timescale
database for storing historical attribute values. Note, that we
are currently working towards a more powerful text analysis,
as is common in AI-based voice assistants.

D. Demonstration

We applied our speech interaction framework to the two
before presented cases. The code of the speech interface is

8https://www.npmjs.com/package/react-speech-recognition
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available in our research lab’s repository: https://github.com/
cdl-mint/SpeechInterface_DigitalTwins.

Furthermore, readers are invited to watch a video of the
speech interface in action: https://youtu.be/7u45YXOH-jc.

IV. DISCUSSION

Our (informal) evaluations with colleagues show that of-
fering a speech-based alternative to classical dashboards or
control panels can lead to more natural interactions and higher
user satisfaction. Providing command aliases allows users to
further customize how they use their systems.

Evidently, the prototype presented in this paper is an initial
development and hence still suffers from certain limitations.
Although we are actively working towards removing those, we
provide a short discussion of some of them here:
Word-based speech matching The current command-
matching is based on simple tokenisation of input text into
words and matching it to device, operation and attribute
names/aliases. Ideally, our approach should be extended to
integrate the capabilities known from modern, AI-based voice
assistants and speech recognition.
Custom speech interaction models As our research focuses
on the speech framework itself, we defined a custom, JSON-
based serialization of UML diagrams that we could easily
adapt and extend. We are currently evaluating different ways to
bring this information to “standardised” UML formats using,
e.g., UML profiles.
Behavioural model data At the moment, our approach only
extracts information from structural models. We are, however,
exploring the possibility of also integrating behavioural models
such as sequence and activity diagrams, which would enable
dynamic adaptation of speech interfaces based on the system’s
state.
Larger sytems Our initial proof-of-concept has been applied
to exemplary systems in our lab. To test the applicability of
our framework generation, we are planning to generate speech
interfaces for large systems with hundreds of device types and
devices. We expect that the generation of speech interfaces for
such systems will entail new scalability challenges.

V. RELATED WORK

Ever since the development of speech interfaces, there has
been vast interest in enabling this form of interaction in
various domains as an alternative to screen/keyboard/mouse
inputs. In recent years, with the growth of IoT applications,
the amount of research in this field is growing strongly.
For instance, to name just two interesting applications, [18]
explored an overview of speech-based techniques for coding
and IoT applications, and [19] provides an overview of voice-
activated devices in health care applications. Next to these,
many large tech companies provide their own voice assistants
and connect them to, e.g., smart home applications or extend
car entertainment systems with voice controls.

Due to the vastness of the explored applications, we narrow
down the related work to the modelling domain. The probably
closest to our work is the research by Peltonen [20] and

Lahtinen [21], who derive speech commands from UML
models. The former explicitly uses voice to interact with
UML class diagrams, e.g., for the creation of objects and
changing of attribute values. The latter work extends voice
interface generation to include state charts and state machines
for the control flow. This is similar to our approach, where we
consider an expansion of our approach to include behavioural
models as future work.

There are also approaches for voice-based modelling. Dana
et al. explore voice-driven modelling [22], while Lahtinen and
Peltonen worked on integrating speech commands to UML
tools [23], [24].

To the best of our knowledge, though, none of the existing
approaches target DTs or DT systems, or look into adding
speech interface support to existing legacy systems or RESTful
APIs.

VI. CONCLUSION

This paper describes a novel approach to enabling speech-
based interaction for digital twin (DT) systems. Specifically,
our approach is based on the generation of voice commands
based on information extracted from structural system models
such as UML object and class diagrams. In the course of
development, we identify three extensions to standard UML
notation that are required to enable a more capable speech
framework configuration: First, the use of “aliases” for device,
operation and attribute names enables the use of a more natural
way of speaking. Secondly, we note that especially for systems
such as ours, it is essential that the UML models can be
extended with API information to also support legacy APIs
that have not yet been updated to the new system architecture.
Finally, we identified the need for “custom actions” which
enables an additional pre- and post-processing of information
before/after the call to the DT’s API.

Based on the initial work presented in this paper, we plan
to integrate more powerful, AI-based speech processing to
replace the word-token-based command matching. Addition-
ally, we also aim to attach our framework to standardised
formats and tools such as EMF/Ecore and the Eclipse eco-
system. Finally, we feel motivated to enable further interaction
capabilities and speech interaction from other types of models
(e.g., behavioural ones such as UML sequence or activity
diagrams).
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